
Ioana Ifrim

Fast Simulation for HEP Experiments

- Deep Learning Techniques -

What? Why? How?

2

Full Simulation of Physics Detectors

One particle at a time propagates

through the physics detector and

energy

depositions in (x, y, z) are recorded

at every step. This then

corresponds to the experimental

output

Computational Efficiency

Increasing luminosity of particle accelerators

poses greater challenges - large MC statistics

to model experimental data - more collisions

= more data = more computing resources

required

Using Deep Learning principles in

treating physics data we can generate

the simulation output (energy

depositions) in a fast manner (2-3

orders of magnitude faster than full

simulation) resembling the Machine

Learning task of image generation

Fast Simulation

Pictures retrieved from [1] https://cds.cern.ch/record/1074317/files/gen-2007-004.jpg [2] https://cds.cern.ch/record/1433717/files/CMSnc.jpg

DL FastSim Development Plan

3

Deep Learning

4

Generative Models

- Generative models are a subset of deep learning networks which for a given training data-

set, they generate new samples/data from the same distribution.

- Two ways to model the distribution (explicit and implicit density). The most efficient and

popular of generative models are: Auto-Regressive models, Variational Auto-Encoders

(VAEs) and Generative Adversarial Networks (GANs).

6

Generative ModelsGenerative Models

77

Generative Adversarial Networks

8

Variational Auto-Encoders Networks

9

Auto-regressive Networks
- The basic difference between Generative Adversarial Networks (GANs) and Auto-

regressive models is that GANs learn implicit data distribution whereas the latter learns an

explicit distribution governed by a prior imposed by model structure.

- tldr: Deep autoregressive models are:

- sequence models, yet feed-forward (i.e. not recurrent);

- generative models, yet supervised.

- a compelling alternative to RNNs for sequential data, and GANs for generation

tasks.

10

- Based on Geant4 validation tools

- Different simplified calorimeters available
- Pb/LAr (ATLAS like)
- PbWO4 (CMS like)
- Pb/Sci (LHCb like)
- W/Si (ILD, CMS HGCal like)

- Started with production of data sets
- >200k events for first tests

Data Production

11

- Working on testing GANs, VAEs and Auto-Regressive Networks

implementations for the different datasets

- Focusing on developing a proper Auto-Regressive network for HEP

domain data

Network Testing

12

Validation

- Based on existing validation tools and plots used by ML FastSim community
- Visible Energy
- Energy/cell (layer)
- Shower profiles (+ mean, second moment)
- …

13

Auto-regressive Networks - Advantages

1. Provide a way to calculate likelihood : These models have the

advantage of returning explicit probability densities (unlike GANs),

making it straightforward to apply in domains such as compression

and probabilistic planning and exploration

2. Training is more stable than GANs : Training a GAN requires

finding the Nash equilibrium. Since, there is no algorithm present

which does this, training a GAN is unstable as compared to auto-

regressive networks.

3. It works for both discrete and continuous data : It is hard to

learn to generate discrete data for GAN.

14

https://towardsdatascience.com/auto-regressive-generative-models-pixelrnn-pixelcnn-32d192911173

15

Network Implementation - Overview

- High level data (energy depositions, incident
particle energy) description as a latent vector h

- The latent vector models the conditional
distribution p(x|h) of energy depositions

- Conditioning is dependent on the coordinates of
the pixel

- Architecture built upon PixelCNN

- Gates provide context memory and help model
more complex interactions

- The vertical stack accounts for blind spots during
convolution

15

Pixel xi depends on pixels x1…x(i-1). To ensure that this is the case, the use of
masks is employed in order to block subsequent information.

16

Network Implementation - Intro

The convolutional layers are unable to completely process the receptive
fields thus leading to a slight miscalculation of pixel values. The pixels left
out constitute the blind spot.

17

Network Implementation - Intro

The convolution is split into two different operations: two separate

stacks - vertical and horizontal. Where vertical stack has no access to

horizontal stack information

18

Network Implementation - Intro

Conditioning on incoming particle energy - During training we feed the

cell depositions as well as the MC Energy to the network to ensure

that the network learns to incorporate that information. During

inference we specify which energy input the output event should

generate.

19

Network Implementation - Intro

We are modelling the distribution p(x|h) of outputs following the

description given by the latent vector h (the high-level image

description):

With the following gated, conditioned activation unit:

where k is the layer number, W the learned weights matrix, f,g the feature maps, V the matrix of shape [nr of classes, nr
of filters], h a one-hot classes vector.

20

Network Implementation - Intro

• PixelCNN by Google DeepMind - probably the first deep autoregressive model. The
authors discuss a recurrent model, PixelRNN, and consider PixelCNN as a “workaround”
to avoid excessive computation.

• PixelCNN++ by OpenAI is essentially PixelCNN but with various improvements.

• WaveNet by Google DeepMind is heavily inspired by PixelCNN, and models raw audio,
not just encoded music. Telecommunications/signals processing tools are used for
coping with the sheer size of audio (high-quality audio involves at least 16-bit precision
samples = 65,536-way-softmax per time step)

• Transformer, the “attention is all you need” model by Google Brain is now a mainstay of
NLP, performing very well at many NLP tasks and being incorporated into subsequent
models like BERT.

• Google DeepMind’s ByteNet can perform neural machine translation (in linear time!)
and Google DeepMind’s Video Pixel Network can model video.

Existing Applications

21

https://arxiv.org/abs/1601.06759
https://arxiv.org/abs/1701.05517
https://deepmind.com/blog/wavenet-generative-model-raw-audio/
https://en.wikipedia.org/wiki/%CE%9C-law_algorithm
https://arxiv.org/abs/1706.03762
https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html
https://arxiv.org/abs/1610.10099
https://arxiv.org/abs/1610.00527

Work in progress and Observations

- Work in progress on both existing models testing and customised network development

- Exploring different geometries and understanding their influence on the results

- Auto-Regressive training is supervised which means that training is stable and highly
parallelizable, it is straightforward to tune hyper-parameters, and that inference is
computationally inexpensive. Also, all principles from ML-101: train-valid-test splits, cross
validation, loss metrics, etc. can be employed (things that we lose when we resort to e.g.
GANs.)

- Autoregressive sequential models have worked for audio (WaveNet), images
(PixelCNN++) and text (Transformer): these models are very flexible in the kind of data that
they can model

22

