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What? Why? How? 
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Full Simulation of Physics Detectors

One particle at a time propagates

through the physics detector and

energy

depositions in (x, y, z) are recorded

at every step. This then

corresponds to the experimental

output

Computational Efficiency

Increasing luminosity of particle accelerators

poses greater challenges - large MC statistics

to model experimental data - more collisions

= more data = more computing resources

required

Using Deep Learning principles in

treating physics data we can generate

the simulation output (energy

depositions) in a fast manner (2-3

orders of magnitude faster than full

simulation) resembling the Machine

Learning task of image generation

Fast Simulation

Pictures retrieved from [1] https://cds.cern.ch/record/1074317/files/gen-2007-004.jpg [2] https://cds.cern.ch/record/1433717/files/CMSnc.jpg



DL FastSim Development Plan
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Deep Learning
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Generative Models

- Generative models are a subset of deep learning networks which for a given training data-

set, they generate new samples/data from the same distribution. 

- Two ways to model the distribution (explicit and implicit density). The most efficient and 

popular of generative models are: Auto-Regressive models, Variational Auto-Encoders 

(VAEs) and Generative Adversarial Networks (GANs).
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Generative ModelsGenerative Models
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Generative Adversarial Networks
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Variational Auto-Encoders Networks
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Auto-regressive Networks
- The basic difference between Generative Adversarial Networks (GANs) and Auto-

regressive models is that GANs learn implicit data distribution whereas the latter learns an 

explicit distribution governed by a prior imposed by model structure. 

- tldr: Deep autoregressive models are:

- sequence models, yet feed-forward (i.e. not recurrent); 

- generative models, yet supervised. 

- a compelling alternative to RNNs for sequential data, and GANs for generation 

tasks.
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- Based on Geant4 validation tools

- Different simplified calorimeters available
- Pb/LAr (ATLAS like) 
- PbWO4 (CMS like) 
- Pb/Sci (LHCb like) 
- W/Si (ILD, CMS HGCal like) 

- Started with production of data sets
- >200k events for first tests

Data Production  
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- Working on testing GANs, VAEs and Auto-Regressive Networks 

implementations for the different datasets

- Focusing on developing a proper Auto-Regressive network for HEP 

domain data 

Network Testing 
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Validation

- Based on existing validation tools and plots used by ML FastSim community
- Visible Energy
- Energy/cell (layer) 
- Shower profiles (+ mean, second moment) 
- …
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Auto-regressive Networks - Advantages

1. Provide a way to calculate likelihood : These models have the 

advantage of returning explicit probability densities (unlike GANs), 

making it straightforward to apply in domains such as compression 

and probabilistic planning and exploration

2. Training is more stable than GANs : Training a GAN requires 

finding the Nash equilibrium. Since, there is no algorithm present 

which does this, training a GAN is unstable as compared to auto-

regressive networks. 

3. It works for both discrete and continuous data : It is hard to 

learn to generate discrete data for GAN.
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https://towardsdatascience.com/auto-regressive-generative-models-pixelrnn-pixelcnn-32d192911173
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Network Implementation - Overview 

- High level data (energy depositions, incident 
particle energy) description as a latent vector h

- The latent vector models the conditional 
distribution p(x|h) of energy depositions

- Conditioning is dependent on the coordinates of 
the pixel

- Architecture built upon PixelCNN 

- Gates provide context memory and help model 
more complex interactions

- The vertical stack accounts for blind spots during 
convolution

15 



Pixel xi depends on pixels x1…x(i-1). To ensure that this is the case, the use of 
masks is employed in order to block subsequent information. 
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Network Implementation - Intro 



The convolutional layers are unable to completely process the receptive 
fields thus leading to a slight miscalculation of pixel values. The pixels left 
out constitute the blind spot.
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Network Implementation - Intro 



The convolution is split into two different operations: two separate 

stacks - vertical and horizontal. Where vertical stack has no access to 

horizontal stack information
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Network Implementation - Intro 



Conditioning on incoming particle energy - During training we feed the 

cell depositions as well as the MC Energy to the network to ensure 

that the network learns to incorporate that information. During 

inference we specify which energy input the output event should 

generate.
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Network Implementation - Intro 



We are modelling the distribution p(x|h) of outputs following the 

description given by the latent vector h (the high-level image 

description):  

With the following gated, conditioned activation unit: 

where k is the layer number, W the learned weights matrix, f,g the feature maps, V the matrix of shape [nr of classes, nr 
of filters], h a one-hot classes vector.
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Network Implementation - Intro 



• PixelCNN by Google DeepMind - probably the first deep autoregressive model. The 
authors discuss a recurrent model, PixelRNN, and consider PixelCNN as a “workaround” 
to avoid excessive computation.

• PixelCNN++ by OpenAI is essentially PixelCNN but with various improvements.

• WaveNet by Google DeepMind is heavily inspired by PixelCNN, and models raw audio, 
not just encoded music. Telecommunications/signals processing tools are used for 
coping with the sheer size of audio (high-quality audio involves at least 16-bit precision 
samples =  65,536-way-softmax per time step)

• Transformer, the “attention is all you need” model by Google Brain is now a mainstay of 
NLP, performing very well at many NLP tasks and being incorporated into subsequent 
models like BERT.

• Google DeepMind’s ByteNet can perform neural machine translation (in linear time!)
and Google DeepMind’s Video Pixel Network can model video.

Existing Applications
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https://arxiv.org/abs/1601.06759
https://arxiv.org/abs/1701.05517
https://deepmind.com/blog/wavenet-generative-model-raw-audio/
https://en.wikipedia.org/wiki/%CE%9C-law_algorithm
https://arxiv.org/abs/1706.03762
https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html
https://arxiv.org/abs/1610.10099
https://arxiv.org/abs/1610.00527


Work in progress and Observations

- Work in progress on both existing models testing and customised network development

- Exploring different geometries and understanding their influence on the results 

- Auto-Regressive training is supervised which means that training is stable and highly 
parallelizable, it is straightforward to tune hyper-parameters, and that inference is 
computationally inexpensive.  Also, all principles from ML-101: train-valid-test splits, cross 
validation, loss metrics, etc. can be employed (things that we lose when we resort to e.g. 
GANs.)

- Autoregressive sequential models have worked for audio (WaveNet), images 
(PixelCNN++) and text (Transformer): these models are very flexible in the kind of data that 
they can model
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