INNOVATE VISION SOLUTIONS

WITH INTEL® DISTRIBUTION OF OPENVINOTM TOOLKIT (OPEN VISUAL INFERENCE & NEURAL NETWORK OPTIMIZATION)

Intel AI Workshop – CERN – May, 8th 2019 francisco.perez@intel.com

INTEL® DISTRIBUTION OF OPENVINO TOOLKIT

Take your computer vision solutions to a new level with deep learning inference intelligence.

What it is

A toolkit to accelerate development of **high performance computer vision** & **deep learning inference into vision/AI applications** used from device to cloud. It enables deep learning on hardware accelerators and easy deployment across multiple types of Intel[®] platforms.

Who needs this product?

- Computer vision, deep learning software developers
- Data scientists
- OEMs, ISVs, System Integrators

Usages

Security surveillance, robotics, retail, healthcare, AI, office automation, transportation, non-vision use cases (speech, text) & more.

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

HIGH PERFORMANCE, PERFORM AI AT THE EDGE

STREAMLINED & OPTIMIZED DEEP LEARNING INFERENCE

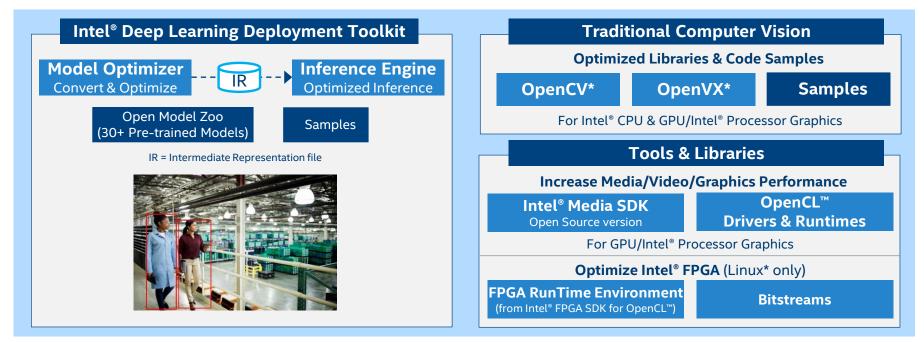
HETEROGENEOUS, CROSS-PLATFORM FLEXIBILITY

Free Download ▶ software.intel.com/openvino-toolkit Open Source version ▶ 01.org/openvinotoolkit

Benefits of Intel[®] Distribution of OpenVINO[™] toolkit

Maximize the Power of Intel® Processors: CPU, GPU/Intel® Processor Graphics, FPGA, VPU

ACCELERATE PERFORMANCE	🔅 INTEGRATE DEEP LEARNING	
Access Intel computer vision accelerators. Speed code performance. Supports heterogeneous execution.	Unleash CNN-based deep learning inference using a common API, 30+ pre-trained models, & computer vision algorithms. Validated on more than 100 public/custom models.	
SPEED DEVELOPMENT	INNOVATE & CUSTOMIZE	
Reduce time using a library of optimized OpenCV* & OpenVX* functions, & 15+ samples.	Use OpenCL™ kernels/tools to add your own	


¹Tractica 2Q 2017

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. OpenVX and the OpenVX logo are trademarks of the Khronos Group Inc. OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

What's Inside Intel[®] Distribution of OpenVINO[™] toolkit

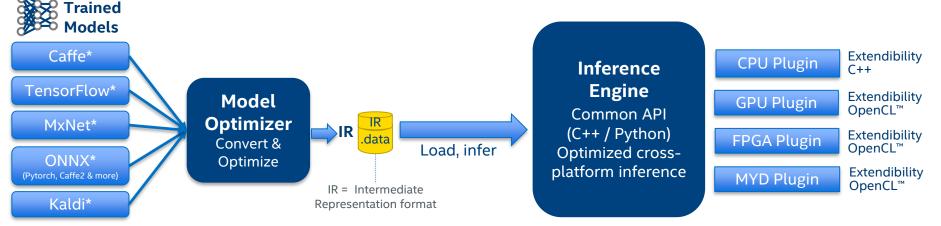
OS Support: CentOS* 7.4 (64 bit), Ubuntu* 16.04.3 LTS (64 bit), Microsoft Windows* 10 (64 bit), Yocto Project* version Poky Jethro v2.0.3 (64 bit), macOS* 10.13 & 10.14 (64 bit)

An open source version is available at <u>01.org/openvinotoolkit</u> (some deep learning functions support Intel CPU/GPU only).

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. OpenVX and the OpenVX logo are trademarks of the Khronos Group Inc. OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

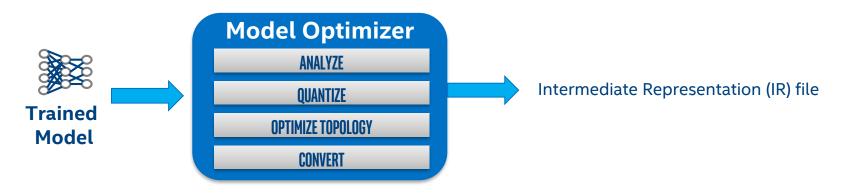
Intel[®] Deep Learning Deployment Toolkit


For Deep Learning Inference

Model Optimizer

- What it is: A Python*-based tool to import trained models and convert them to Intermediate representation.
- Why important: Optimizes for performance/space with conservative topology transformations; biggest boost is from conversion to data types matching hardware.

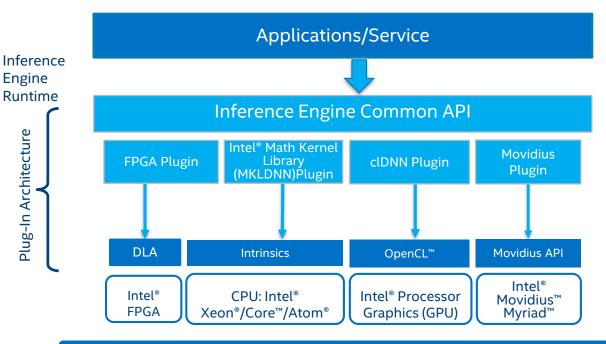
Inference Engine


- What it is: High-level inference API
- Why important: Interface is implemented as dynamically loaded plugins for each hardware type. Delivers best performance for each type without requiring users to implement and maintain multiple code pathways.

GPU = Intel CPU with integrated graphics processing unit/Intel $^{\circ}$ Processor Graphics

Optimization Notice

Improve Performance with Model Optimizer

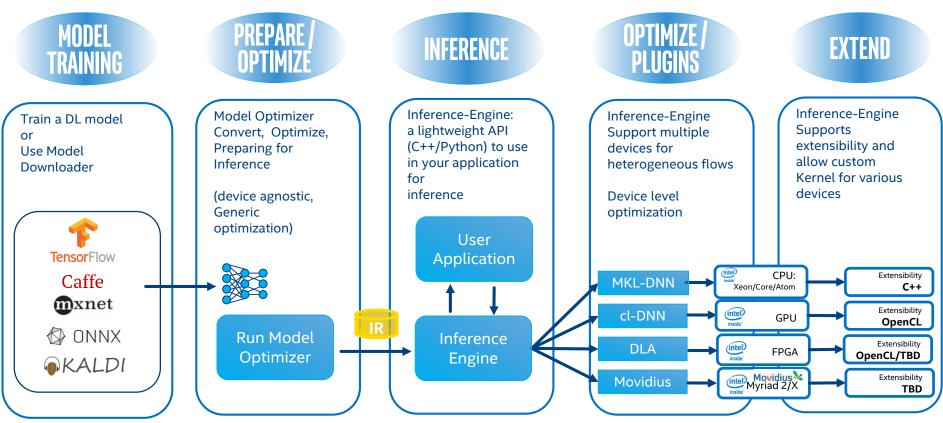


- Easy to use, Python*-based workflow
- Import Models from many supported frameworks: Caffe*, TensorFlow*, MXNet*, Kaldi*, exchange formats like ONNX* (Pytorch*, Caffe2* and others through ONNX).
- 100+ models for Caffe, MXNet, TensorFlow validated. Supports all ONNX* model zoo public models.
- Extends inferencing for non-vision networks with support of LSTM and 3D Convolutional based networks and Kaldi framework/Kaldi Nnet2*.

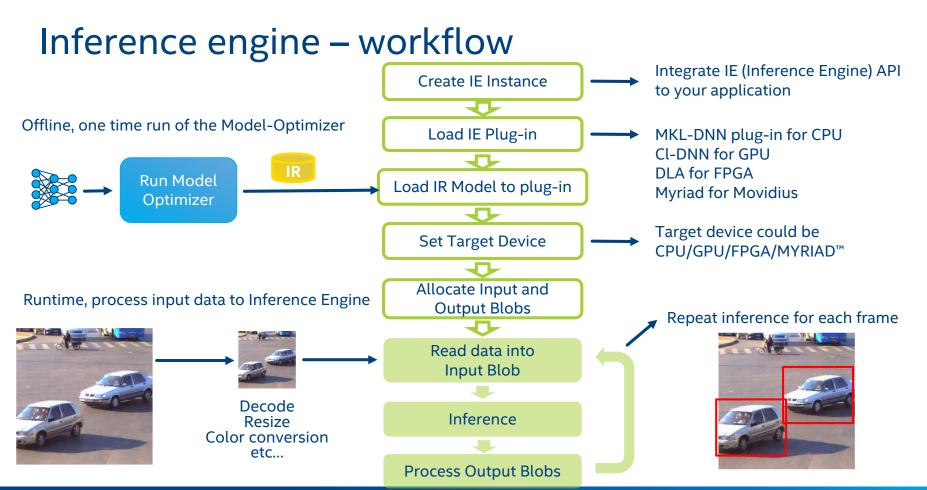
Optimal Model Performance Using the Inference Engine

- Simple & unified API for inference across all Intel[®] architecture
- Optimized inference on large IA hardware targets (CPU/GEN/FPGA/MYD)
- Heterogeneity support allows execution of layers across hardware types
- Asynchronous execution improves performance
- Futureproof/scale your development for future Intel[®] processors

Transform Models & Data into Results & Intelligence


GPU = Intel CPU with integrated graphics/Intel® Processor Graphics/GEN

Optimization Notice


Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. OpenVX and the OpenVX logo are trademarks of the Khronos Group Inc. OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Computer Vision Application Pipeline

Optimization Notice

Optimization Notice

```
Enabling multiple accelerators
#define MKLDNN
                "MKLDNNPlugin.dll"
#define CLDNN
                "clDNNPlugin.dll"
                                                                                            with openVINO
#define HDDLDNN
                "HDDLPlugin.dll"
                "myraidPlugin.dll"
#define MYXDNN
#define FPGADNN "dliaPlugin.dll"
#else
                "libMKLDNNPlugin.so"
#define MKLDNN
                "libclDNNPlugin.so"
#define CLDNN
#define HDDLDNN "libHDDLPlugin.so"
#define MYXDNN
                "libmyraidplugin.so"
#define FPGADNN "libdliaplugin.so"
#endif
if (dev == "cpu" )
              = InferenceEngine::InferenceEnginePluginPtr(MKLDNN);
   plugin
    CPUplugin = InferenceEngine::InferencePlugin(plugin);
                                                                                                Benchmark Application
    CPUplugin.AddExtension(std::make shared<Extensions::Cpu::CpuExtensions>());
                                                                                                     (C++ / Python)
else if (dev == "qpu")
                                                                                                   Inference Engine
  plugin = InferenceEngine::InferenceEnginePluginPtr(CLDNN );
                                                                                                Common API (C++ / Python)
else if (dev == "myx" )
  plugin = InferenceEngine::InferenceEnginePluginPtr(MYXDNN);
                                                                                         CPU
                                                                                                   GPU
                                                                                                             Myriad
else if (dev == "fpga" )
                                                                                        Plugin
                                                                                                  Plugin
                                                                                                             Plugin
  plugin = InferenceEngine::InferenceEnginePluginPtr(FPGADNN);
else
                                                                                                 intel
                                                                                        (intel)
                                                                                                     *
                                                                                                             (intel)
    std::cout << "Unrecognized device : " << dev << std::endl;</pre>
                                                                                        XEON
                                                                                                            MOVIDIUS
                                                                                                 Iris<sup>®</sup>
    std::cout << "This is very unlikely to end well." << std::endl;</pre>
                                                                                         inside
                                                                                                              inside
                                                                                                 Graphics
```

Copyright © 2019, Intel Corporation, All rights reserved. *Other names and brands may be claimed as the property of others. **FPGA**

Plugin

(intel)

ARRIA[®] 10

inside^{*}

Speed Deployment with Pre-trained Models & Samples

Pretrained Models in Intel[®] Distribution of OpenVINO[™] toolkit

- Age & Gender
- Face Detection–standard & enhanced
- Head Position
- Human Detection–eye-level & high-angle detection
- Detect People, Vehicles & Bikes
- License Plate Detection: small & front facing
- Vehicle Metadata
- Human Pose Estimation
- Action recognition encoder & decoder

- Text Detection & Recognition
- Vehicle Detection
- Retail Environment
- Pedestrian Detection
- Pedestrian & Vehicle Detection
- Person Attributes Recognition Crossroad
- Emotion Recognition
- Identify Someone from Different Videos– standard & enhanced

Binary Models

- Facial Landmarks
- Gaze estimation

- Identify Roadside objects
- Advanced Roadside Identification
- Person Detection & Action Recognition
- Person Re-identification–ultra small/ultra fast
- Face Re-identification
- Landmarks Regression
- Smart Classroom Use Cases
- Single image Super Resolution (3 models)
- Instance segmentation
- and more...

Face Detection Binary

Vehicle Detection Binary

ResNet50 Binary

Pedestrian Detection Binary

Optimization Notice

Save Time with Deep Learning Samples

Use Model Optimizer & Inference Engine for public models & Intel pretrained models

- Object Detection
- Standard & Pipelined Image Classification
- Security Barrier
- Object Detection SSD
- Neural Style Transfer

- Hello Infer Classification
- Interactive Face Detection
- Image Segmentation
- Validation Application
- Multi-channel Face Detection
- Object Detection for Single Shot Multibox Detector using Asynch API+

OpenVINO[™] Toolkit

Open Source Version

- Provides flexibility and availability to the developer community to extend OpenVINO[™] toolkit for custom needs
- Components that are open sourced
 - Deep Learning Deployment Toolkit with CPU, GPU & Heterogeneous plugins github.com/opencv/dldt
 - Open Model Zoo Includes pre-trained models, model downloader, demos and samples: <u>github.com/opencv/open_model_zoo</u>
- See <u>FAQ</u> and next slide for key differences between the open source and Intel distribution

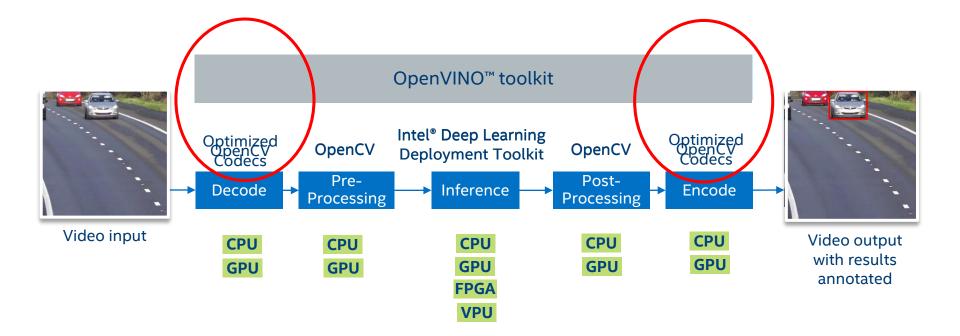
Learn More > 01.org/openvinotoolkit

Quick Guide: What's Inside the Intel Distribution vs Open Source version of OpenVINO[™] toolkit

Tool/Component	Intel [®] Distribution of OpenVINO™ toolkit	OpenVINO [™] toolkit (open source)	Open Source Directory https://github.com
Installer (including necessary drivers)	\checkmark		
Intel® Deep Learning Deployment toolkit	,		
Model Optimizer	v	×	/opencv/dldt/tree/2018/model-optimizer
Inference Engine	\checkmark	✓	/opencv/dldt/tree/2018/inference-engine
Intel CPU plug-in	✓ Intel [®] Math Kernel Library (Intel [®] MKL) only ¹	✓ BLAS, Intel [®] MKL ¹ , jit (Intel MKL)	/opencv/dldt/tree/2018/inference-engine
Intel GPU (Intel® Processor Graphics) plug-in	\checkmark	\checkmark	/opencv/dldt/tree/2018/inference-engine
Heterogeneous plug-in	\checkmark	\checkmark	/opencv/dldt/tree/2018/inference-engine
Intel GNA plug-in	\checkmark		
Intel® FPGA plug-in	\checkmark		
Intel® Neural Compute Stick (1 & 2) VPU plug-in	\checkmark		
Intel® Vision Accelerator based on Movidius plug-in	\checkmark		
30+ Pretrained Models - incl. Model Zoo (IR models that run in IE + open sources models)	\checkmark	\checkmark	/opencv/open_model_zoo
Samples (APIs)	\checkmark	\checkmark	/opencv/dldt/tree/2018/inference-engine
Demos	\checkmark	\checkmark	/opencv/open_model_zoo
Traditional Computer Vision	,		
OpenCV*	v	✓	/opencv/opencv
OpenVX (with samples)	\checkmark		
Intel® Media SDK	\checkmark	√2	/Intel-Media-SDK/MediaSDK
OpenCL [™] Drivers & Runtimes	\checkmark	√2	/intel/compute-runtime
FPGA RunTime Environment, Deep Learning Acceleration & Bitstreams (Linux* only)	\checkmark		

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. ¹Intel MKL is not open source but does provide the best performance ²Refer to readme file for validated versions



END TO END VIDEO PIPELINE

Media SDK HW Accelerators

End-to-End Vision Workflow

Intel® Media SDK for Linux Overview

_Included in OpenVINO installation. Available as standalone tool FREE Download

What it is:

An API to access Intel[®] Quick Sync Video hardware-accelerated encode/decode & processing

Optimized Industry Standard Video Codecs

- H.265 (HEVC), H.264 (AVC), MJPEG
- MPEG-2, VP9, VP8, VC1 & more
- Video Pre & Post Processing
 - Resize, Scale, Deinterlace
 - Color Conversion, Composition, Alpha Blending
 - Denoise, Sharpen & more

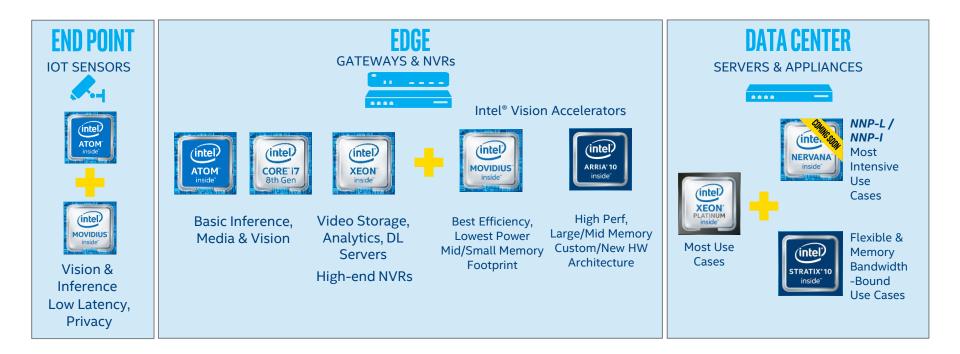
Benefits:

Boost media and video application performance with hardwareaccelerated codecs & programmable graphics on Intel® processors.**

Improve video quality, innovate cloud graphics & media analytics. Reduce infrastructure & development costs.

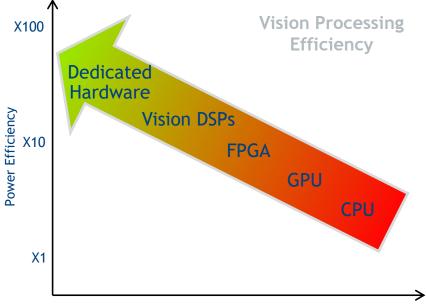
Hardware Support

Select Intel[®] Xeon[®], Celeron[®], Pentium[®], and Intel Atom[®] processors that support Intel[®] Quick Sync Video


Use Cases

Media Creation & Delivery for Embedded Applications

Deliver fast, high quality video decoding / encoding / transcoding from camera to cloud


Intel Vision supports AI across endpoint, edge & cloud typical devices by application

Choosing the "right" hardware

- Consider in each device
 - Compute efficiency
 - Compute parallelism (# of EU/Cores)
 - Power consumption
 - Memory hierarchy, size, communication
 - Programming model, APIs
- Trade offs
 - Power/ performance
 - Price
 - Software flexibility, portability

Computation Flexibility

Intel[®] Vision Products Comparison

HOST IA PLATFORMS:

APPLICATION PROCESSING, MEDIA, "FREE" CV/DL

Use the Intel[®] Media SDK to achieve en/de/trans-code performance

Maximize CV/DL performance on the host platform with the Open Visual Inference & Neural Network Optimization (OpenVINO[™]) toolkit

INTEL[®] MOVIDIUS[™] VPUS

OVERVIEW

Intel Movidius VPUs offer high performance per watt per dollar. Easily add AI-based visual intelligence by plugging in one or more cards.

VALUE PROP

Intel Movidius VPUs enable deep neural network inferencing workloads with high compute efficiency, low power and form factor constraints (e.g., cameras), and excellent performance/W/\$, for well-defined workloads.

KEY USE CASES

Intel Movidius VPUs work well with networks that have:

- A small memory footprint (less than 250 MParameters)
- Lower performance requirements (<3 GMACs)
- Accelerator Power Budget: 2-25W

OVERVIEW

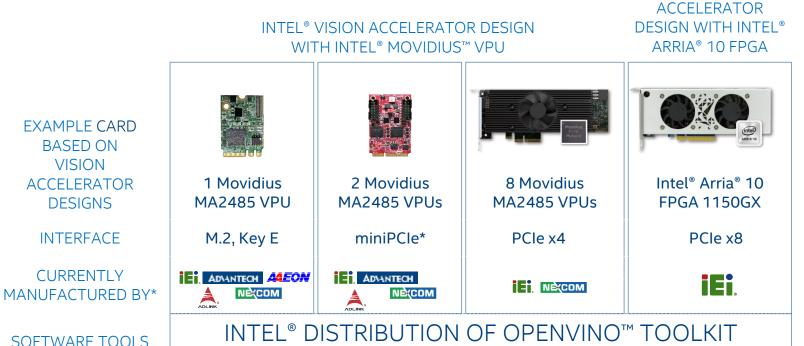
Intel FPGAs offer exceptional performance, flexibility, and scalability for NVRs, edge deep learning inference appliances, and on-premise servers or cloud.

VALUE PROP

Intel FPGAs achieve TOPS performance required on a single chip, support compute intensive networks (VGG*, ResNet* 101).

KEY USE CASES

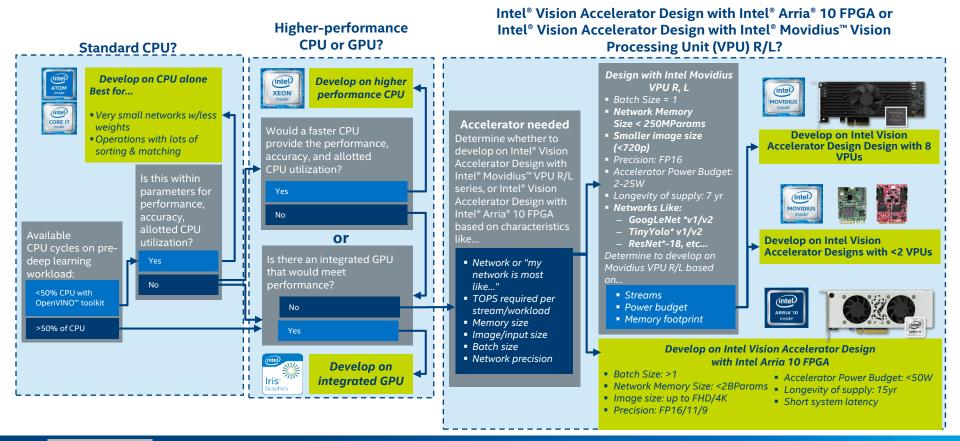
The Intel Arria 10 FPGAs work well with networks that have:


- Larger memory footprint (more than 250 MParameters)
- Larger performance requirements (>3 GMACs)
- Accelerator Power Budget: <50W
- # of streams: 3-15

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

20

Examples of Intel® Vision Accelerator Products


Develop NN Model; Deploy across Intel[®] CPU, GPU, VPU, FPGA; Leverage common algorithms

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. FUITURE

INTEL[®] VISION

Deep Learning Inference Engine Decision Tree

Optimization Notice

INTEL® NEURAL COMPUTE STICK 2 ACCELERATE DEEP LEARNING DEVELOPMENT FOR EDGE DEVICES

(intel) Neural Compute Stick 2

COMPUTER VISION AND ARTIFICIAL INTELLIGENCE ARE TRANSFORMING IOT DEVICES AT THE NETWORK EDGE

INTRODUCING INTEL[®] NEURAL COMPUTE STICK 2

A Plug-and-Play Deep Learning Development Kit

INTEL® DISTRIBUTION OF OPENVINO[™] TOOLKIT SUPPORTED NETWORKS

View Documentation https://docs.openvinotoolkit.org/latest/ docs IE DG supported plugins MYRIAD.html

Caffe

- AlexNet
- CaffeNet
- GoogleNet (Inception) v1, v2, v4
- VGG family (VGG16, VGG19)
- SqueezeNet v1.0, v1.1
- ResNet v1 family (18** ***, 50, 101, 152)
- MobileNet (mobilenet-v1-1.0-224, mobilenet-v2)
- Inception ResNet v2
- DenseNet family** (121,161,169,201)
- SSD-300, SSD-512, SSD-MobileNet, SSD-GoogleNet, SSD-SqueezeNet

TensorFlow

- AlexNet
- Inception v1, v2, v3, v4
- Inception ResNet v2
- MobileNet v1, v2
- ResNet v1 family (50, 101, 152)
- ResNet v2 family (50, 101, 152)
- SqueezeNet v1.0, v1.1
- VGG family (VGG16, VGG19)
- Yolo family (yolo-v2, yolo-v3, tiny-yolo-v1, tiny-yolo-v2, tinyyolo-v3)
- faster_rcnn_inception_v2, faster_rcnn_resnet101
- ssd_mobilenet_v1
- DeepLab-v3+

NOTE: Not an exhaustive list – only includes popular networks.

mxnet

- AlexNet and CaffeNet
- DenseNet family** (121,161,169,201)
- SqueezeNet v1.1
- MobileNet v1, v2
- NiN
- ResNet v1 (101, 152)
- ResNet v2 (101)
- SqueezeNet v1.1
- VGG family (VGG16, VGG19)
- SSD-Inception-v3, SSD-MobileNet, SSD-ResNet-50, SSD-300

** Network is tested on Intel[®] Movidius[™] Neural Compute Stick with BatchNormalization fusion optimization disabled during Model Optimizer import *** Network is tested on Intel[®] Neural Compute Stick 2 with BatchNormalization fusion optimization disabled during Model Optimizer import

29

INTEL® DISTRIBUTION OF OPENVINO[™] TOOLKIT SUPPORTED LAYERS

View Documentation https://docs.openvinotoolkit.org/latest/ docs IE DG supported plugins Supported Devices.html

- Activation-Clamp
- Activation-ELU
- Activation-Leaky ReLU
- Active-PReLU
- Activation-ReLU
- Activation-ReLU6
- Activation-Sigmoid/Logistic
- Activation-TanH
- ArgMax
- BatchNormalization
- Concat
- Const
- Convolution-Dilated
- Convolution-Grouped
- Convolution-Ordinary
- Crop

- CTCGreedyDecoder*
- Deconvolution
- DetectionOutput*
- Eltwise-Max
- Eltwise-Mul
- Eltwise-Sum
- Flatten
- FullyConnected (Inner Product)
- GRN
- Interp
- LRN (Norm)
- MVN*
- Normalize*
- Pad*
- Permute
- Pooling(AVG,MAX)*

- Power
- PriorBox
- PriorBoxClustered
- Proposal
- PSROIPooling
- RegionYolo
- ReorgYolo
- Resample
- Reshape
- RNN

È

- ROIPooling
- ScaleShift*
- Slice
- SoftMax
- Split
- Tile

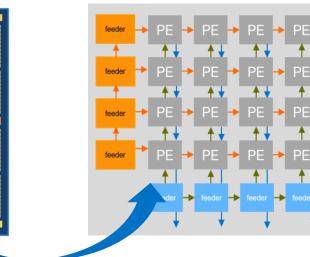
Intel[®] Neural Compute Stick 2

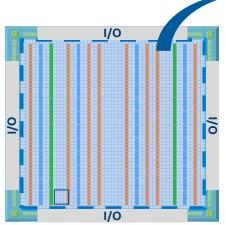
* Support is limited to the specific parameters. Refer to "Known Layers Limitation" section for the device <u>from the list of supported</u>. Changed since last update

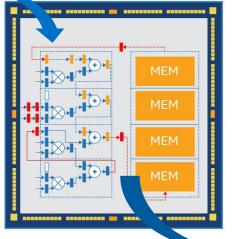
EXPEDITE DEVELOPMENT AND DEPLOYMENT PRE-TRAINED MODELS

Description	Pre-trained Model	Supported Samples	
Face detection for driver monitoring	face-detection-adas-0001	Interactive face detection	
Age and gender recognition	age-gender-recognition-retail-0013	Interactive face detection	
Emotion recognition for retail	emotions-recognition-retail-0003	Interactive face detection	
License plate detector	vehicle-license-plate-detection-barrier-0106	Security barrier camera	
Vehicle attributes recognition	vehicle-attributes-recognition-barrier-0039	Security barrier camera	
License plate recognition	license-plate-recognition-barrier-0001	Security barrier camera	
Person, vehicle and bike detection	person-vehicle-bike-detection-crossroad-0078	Crossroad camera	
Person re-identification	person-reidentification-retail-0076	Crossroad camera	
	person-reidentification-retail-0031	Crossroad camera pedestrian tracker	
	person-reidentification-retail-0079	Crossroad camera	
Person detection	person-detection-retail-0013	Any SSD-based sample	
Face detection for retail	face-detection-retail-0004	Any SSD-based sample	
Face and person detection for retail	face-person-detection-retail-0002	Any SSD-based sample	
Vehicle detection	vehicle-detection-adas-0002	Any SSD-based sample	
Landmarks regression fro retail	landmarks-regression-retail-0009	Smart classroom	

View Documentation > http://docs.openvinotoolkit.org/latest/_docs_Pre_Trained_Models.html

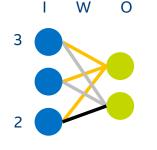

0

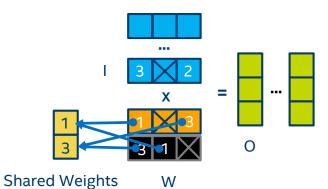

INTEL FPGAS FOR AI

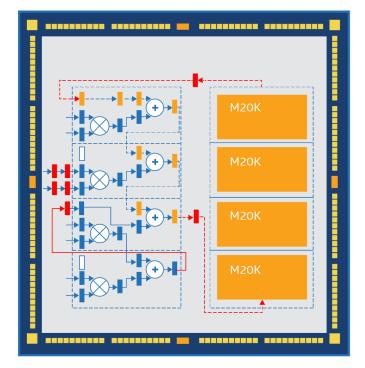

How Intel® FPGAs enable DEEP Learning

- Millions of reconfigurable logic elements & routing fabric
- Thousands of 20Kb memory blocks & MLABs
- Thousands of variable precision digital signal processing (DSP) blocks
- Hundreds of configurable I/O & high-speed transceivers

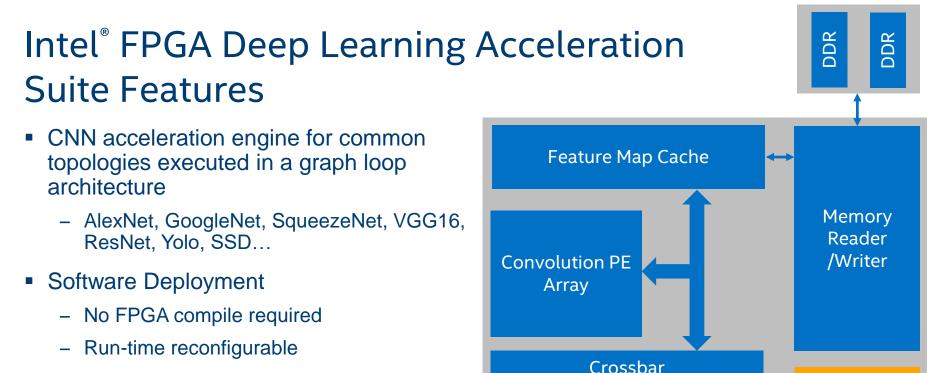
- Programmable Datapath
- Customized Memory structure
- Configurable compute


Optimization Notice




Adapting to innovation

Many efforts to improve efficiency


- Batching
- Reduce bit width
- Sparse weights
- Sparse activations
- Weight sharing
- Compact network

Optimization Notice

- Customized Hardware Development
 - Custom architecture creation w/ parameters
 - Custom primitives using OpenCL[™] flow

prim

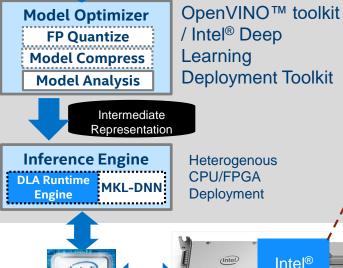
prim

prim

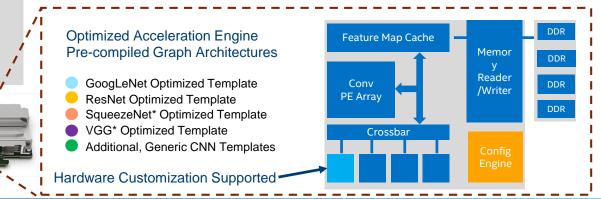
custom

37

Config

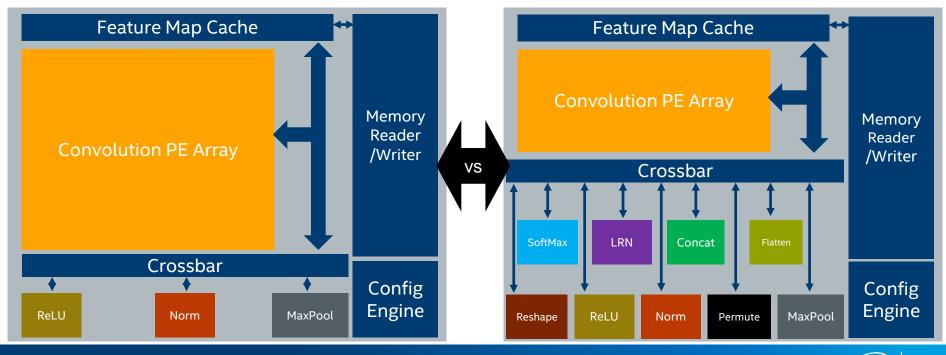

Engine

FPGA Usage with OpenVINO[™] toolkit

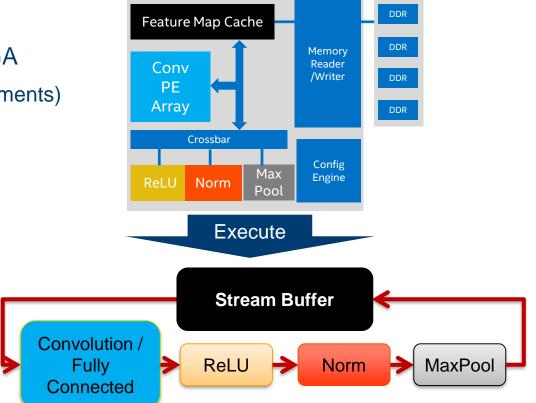

FPGA

Trained Model Caffe, TensorFlow, etc...

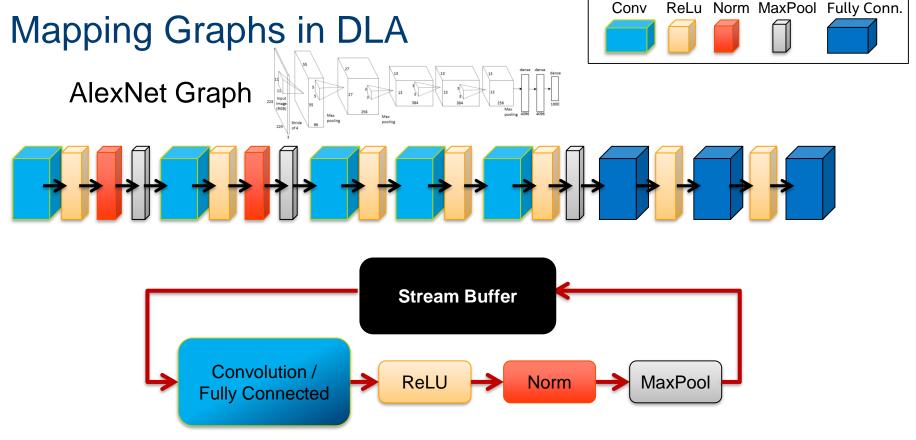
- Supports common software frameworks (Caffe, TensorFlow)
- Model Optimizer enhances model for improved execution, storage, and transmission
- Inference Engine optimizes inference execution across Intel[®] hardware solutions using unified deployment API
- Intel FPGA DLA Suite provides turn-key or customized CNN acceleration for common topologies


(intel)

XEON

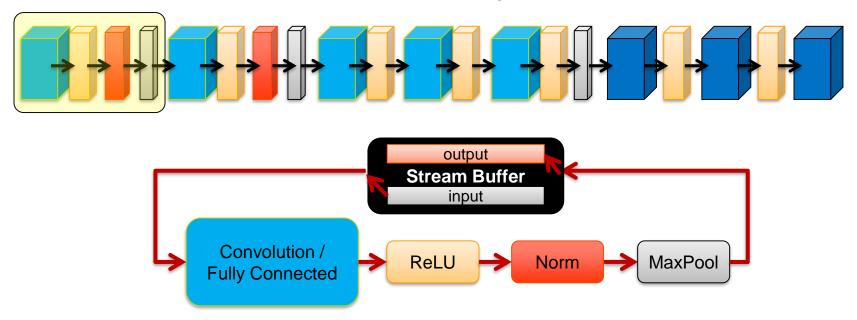

Support for Different Topologies

Tradeoff between features and performance

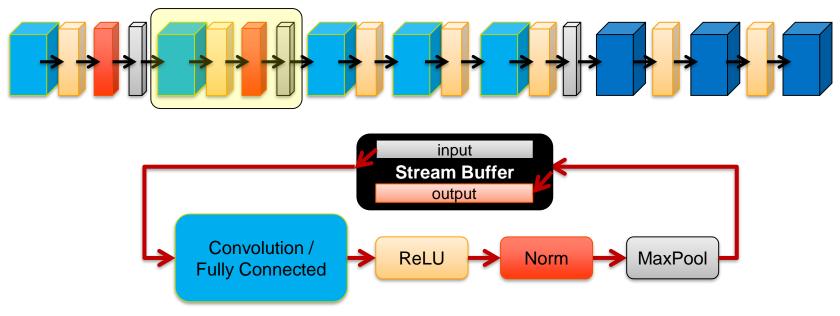


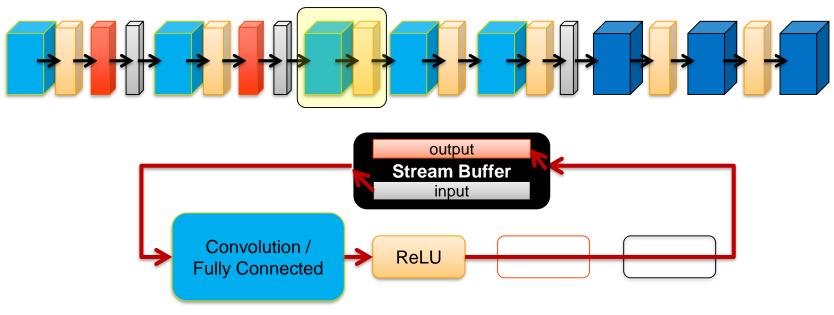
DLA Architecture: Built for Performance

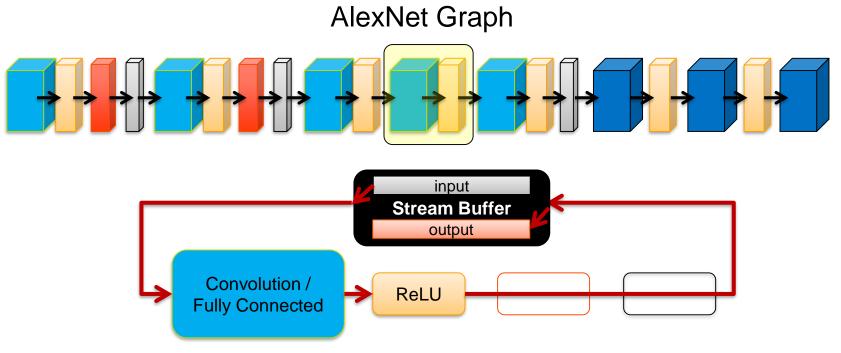
- Maximize Parallelism on the FPGA
 - Filter Parallelism (Processing Elements)
 - Input-Depth Parallelism
 - Batching
 - Feature Stream Buffer
 - Filter Cache
- Choosing FPGA Bitstream
 - Data Type / Design Exploration
 - Primitive Support



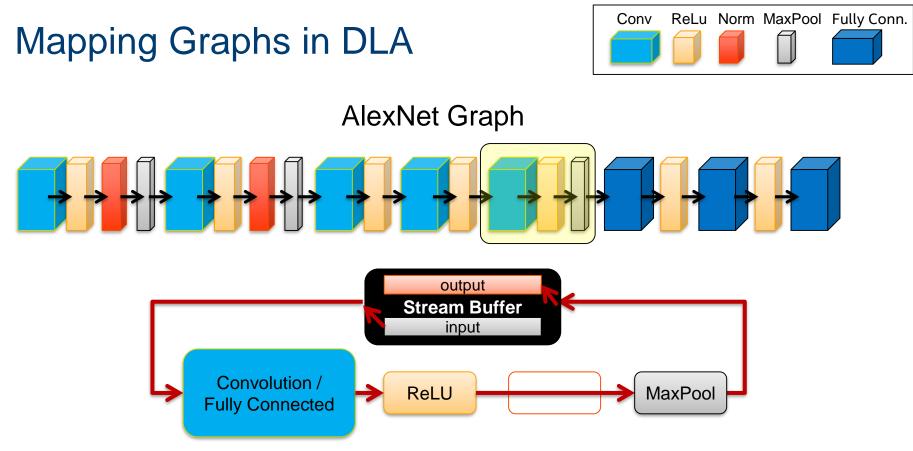
Blocks are run-time reconfigurable and bypassable

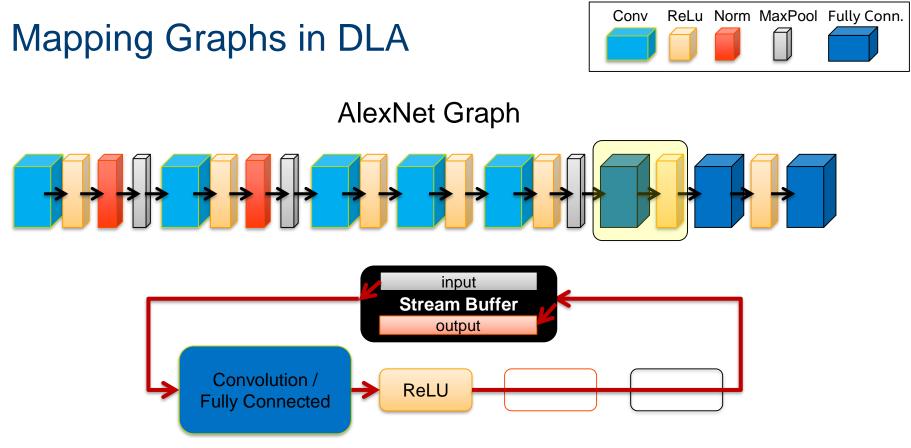

AlexNet Graph

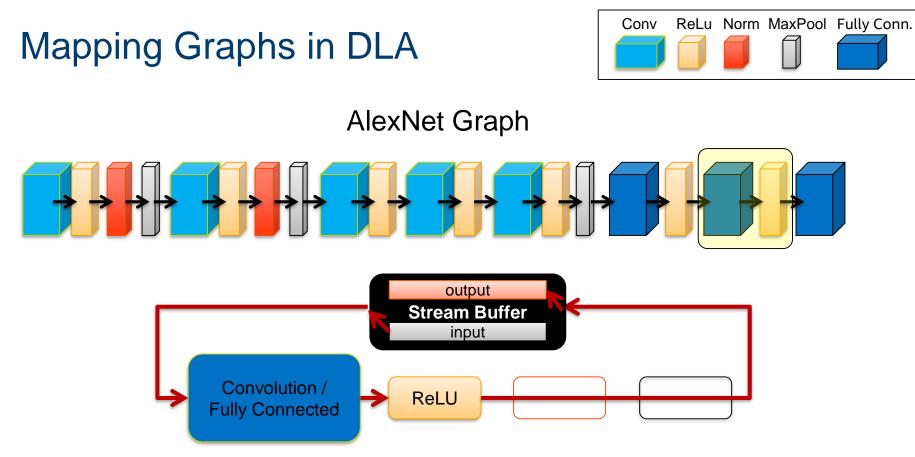

AlexNet Graph

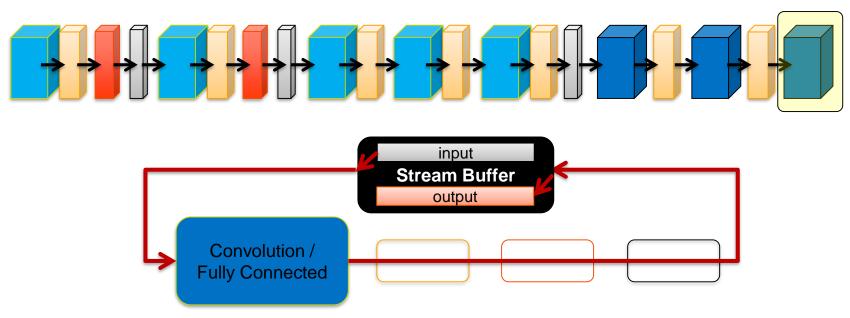


AlexNet Graph

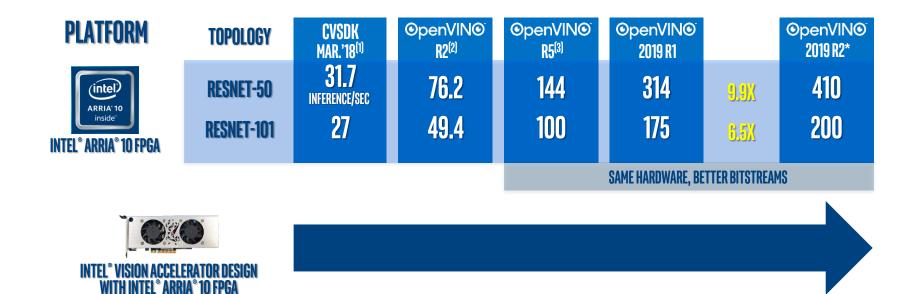








AlexNet Graph


Demos with OpenVINO

Application	Supported samples	Application	Supported samples
Face detection	ADAS Interactive face detection	Person Reidentification	Crossroad camera
Age/gender recognition	Retail Interactive face detection	Person Reidentification	Crossroad camera pedestrian tracker
Head pose estimation	ADAS Interactive face detection	Person Reidentification	Retail Crossroad camera
Emotion recognition	Retail Interactive face detection	Person detection	Retail SSD based
Vehicle License plate detection	Security barrier camera	Face detection	Retail SSD based
Vehicle attribute recognition	Security barrier camera	Face person detection	Retail SSD based
License plate recognition	Security barrier camera	Pedestrian detection	ADAS SSD based
Person, vehicle, bike detection	Object detection	Vehicle detection	ADAS SSD based
Landmarks regression	Smart classroom	Person and vehicle detector	ADAS SSD based

https://software.intel.com/en-us/openvino-toolkit/documentation/pretrained-models

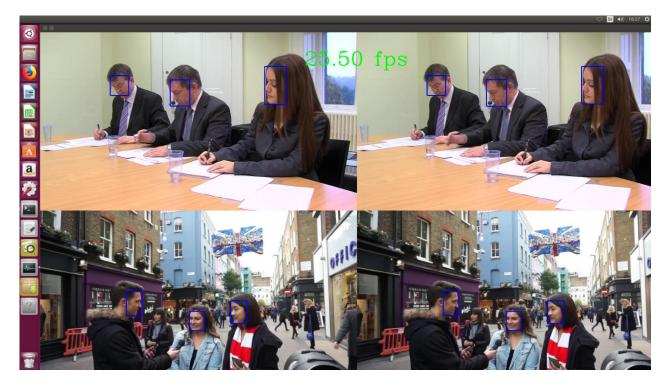
Optimization Notice

FPGA performance evolves over time

Optimization Notice Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

2019 R1

OpenVINO demo – Multiple Channel Face Detection


CPU only mode

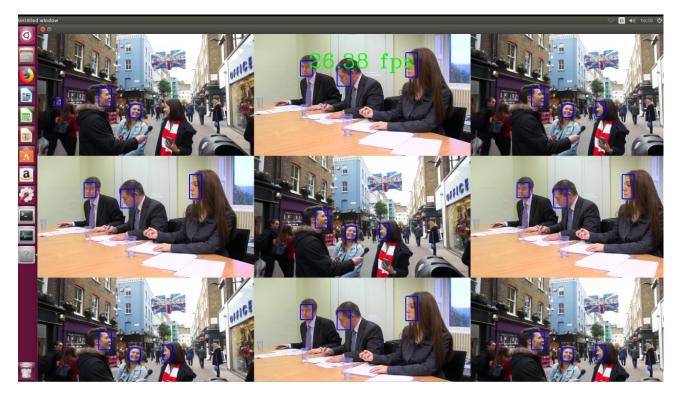
- 4 channels
- 19fps @channel
- 90% CPU used

System Configuration CPU: i7-6820EQ CPU @ 2.80GHz 4 physical cores HD 530 iGPU – Gen 9 24 ex units @350MHz FPGA card: Mustang F-100 Arria® 10 GX1150 FPGA PCIe Gen3x8 8G on-board DDR4

Optimization Notice Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

OpenVINO demo – Multiple Channel Face Detection

HETERO: GPU, CPU


- 4 channels
- 26fps @channel
- 75% CPU used

System Configuration CPU: i7-6820EQ CPU @ 2.80GHz 4 physical cores HD 530 iGPU – Gen 9 24 ex units @350MHz FPGA card: Mustang F-100 Arria® 10 GX1150 FPGA PCIe Gen3x8 8G on-board DDR4

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

OpenVINO demo – Multiple Channel Face Detection

HETERO: FPGA, CPU

- 9 channels
- 26fps @channel
- 55% CPU used

System Configuration CPU: i7-6820EQ CPU @ 2.80GHz 4 physical cores HD 530 iGPU – Gen 9 24 ex units @350MHz FPGA card: Mustang F-100 Arria® 10 GX1150 FPGA PCIe Gen3x8 8G on-board DDR4

Optimization Notice Copyright © 2019, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

experience what's inside™