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LHC is one of the largest and truly global scientific projects 

ever, is a turning point in modern physics, big bang machine​

● Large is an understatement​

● Hadrons referred to here are protons​

● Collide is what it does, as we will see​
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16 miles of magnets and 

connections are kept 

colder than outer space, 

using over 100 tons of 

liquid helium​

Protons race around a 

27 km circuit at 

99.999999% the speed 

of light​

Protons crashing head on 

into each other 40,000,000 

times a second​

Violent collisions 

corresponding to 

temperatures a billion 

times higher than the core 

of the sun will be 

produced.​

That is roughly 

160,000,000,000,000,000 C​

The beam pipe is 

evacuated to the same 

vacuum as interplanetary 

space​

The pressure is about 

1/10th that of the surface 

of the moon​



THE 
COMPACT 
MUON 
SOLENOID 
(CMS) 
EXPERIMENT

http://cms.web.cern.
ch/news/what-cms
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• You have to make sure that the detector behaves well  

in order to perform sensible data analysis. 

• Reduce man power.

• Shifters monitor constantly the quality of the data flow.

• Discriminate between good and bad data to have high purity

• Build something that helps the people to minimize the time 

needed to spot problems and save time examining hundreds of 

histograms

• Build intelligence that analyzes the data and raises alarms in 

case of problems. Have quick feedback.

THE CHALLENGE
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• Deciding the best architecture of the network is key

• Too little and it may not be able to learn (underfitting)

• Too big and it may learn to only identify very specific and/or unnecessary features 

(overfitting)

• There is no rule of thumb

• Many, many, many…… possible combinations.

THE CHALLENGE (2)



WHAT IS DATA QUALITY MONITORING (DQM)?

• Two kinds of workflows: 

• Online DQM 

• Provides feedback of live data taking. 

• Alarms if something goes wrong.

• Offline DQM

• After data taking

• Responsible for bookkeeping and certifying the final data with fine time 

granularity.
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HOW TO AUTOMATE THE DATA QUALITY CHECKS?
USE MACHINE LEARNING!

• It’s everywhere now!

• A.I. Learning

• Self-driving cars

• How does Google/Facebook know what you want?

• Face/Handwriting Recognition

• In our case everything reduces to a 

Classification problem

• Anomaly Detection
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OBJECTIVES

• The project aims at applying recent progress in Machine Learning 

techniques to the automation of the DQM scrutiny for HCAL

• Focus on the Online DQM.

• Compare the performance of different ML algorithms.

• Fully supervised vs semi-supervised approach.
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TOOLS AND DATA PREPARATION

• Working env: python Jupyter notebook

• Keras (with Tensorflow as backend) and Scikit-learn

• Creation of a model

• Train it, test its performance

• The input data consists of occupancy maps

• one map for each luminosity section

• Used 2017 certified “good” data and generate “bad” data 

artificially
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Machine Learning libraries

SCIKIT-LEARN

• Pre-defined models

• Logistic Regression

• MLP

• Not much control over the model’s 

architecture

• Very useful for testing performance

KERAS

• Make your own models

• A bit sophisticated 

• Only for making NN

• Neural Networks

• Deep Convolutional

• Best with image recognition
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Images used
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5x5 (readout channels) problematic region with fixed location

5x5 problematic region with random location

Good Dead Hot

Images like these were used as inputs
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How to train a model
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Models used

• Supervised - Convolutional Neural Network

• Results

• Semi Supervised- Auto Encoder

• Results
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Supervised Model
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RESULTS
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SEMI-SUPERVISED MODEL
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Auto-Encoder

• The bottleneck structures 

work using dimensionality 

reduction. 

• We are interested in 

seeing the features 

that are learned at the 

bottleneck stage of the 

AE after a successful 

reconstruction.

• We can use the 

reconstruction loss as a 

discriminant
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SETTINGS FOR THE 
MODEL

• Trained only on good images

• Expected to see better 

reconstruction for good images 

and a much different 

reconstruction for bad images.

• Bad images have 5x5 bad 

regions

• Hot

• Dead

• Images have been normalized
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ARCHITECTURE
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RESULTS
After testing different parameters 

this architecture seems to perform 

best for us.
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RESULTS
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The distribution of the error in the reconstruction confirms that they are 
differentiable and so we can simply place a cut and classify accordingly



Thank you!
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BACKUP
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SIMPLE ARCHITECTURE

NEXT 
ARCHITECTURE

WITH SIMPLE (BINARY, FIXED LOCATION) 
PROBLEM
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Architecture
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RESULTS

Fixed Location Random Location
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Fixed Location Random Location
32



NOW LET'S MAKE THE PROBLEM A BIT 
HARDER 

• With random position

• Multiclass problem (good ,hot, dead)

• Same arch.
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RESULTS
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NOW LET'S MAKE THE PROBLEM MORE 
REALISTIC 

• With random position

• Multiclass problem (good ,hot, dead)

• Same arch.

• Only 1x1 bad channels
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Good Dead Hot

Images like these were used as inputs
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ADD A COUPLE OF LAYERS
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TUNING

• Now we have to find a way to a make the model perform slightly 

better

• Minimize the amount of false positives
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HOW TO FIX THIS?

This Photo by Unknown Author is licensed under CC BY-SA
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https://math.stackexchange.com/questions/447747/how-to-prove-triangle-inequality-for-p-norm
https://creativecommons.org/licenses/by-sa/3.0/


WHAT’S NEXT?
• Why and exactly what is it learning?

• Can we make it work with something more realistic?

• 1x1 bad region (channel)

• Can it identify what values should be expected after each lumi-section?

• Move from artificial bad data to real cases of bad data (in progress)
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• With this project I’ve noticed

• There are many parameters to consider (architecture, nodes, optimizers)

• There is no rule that let’s you know where to start or how to develop the correct 

model

• There is  a lot of trial and error.

• You have to spend more time building the model than tuning the parameters.

• There have been many other versions of the architectures shown.

• All show similar patterns for results
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USED MODELS

For the models in the supervised approach :
• Loss is categorical cross entropy
For the more complex models 
• Optimizer is Adam or other adaptive optimizers with 

similar results
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TOOLS AND DATA PREPARATION

• Have been familiarized with the following tools:

• Working with data stored as hdf5 files 

• Familiarize with NumPy arrays

• Working env: Juypiter python notebook

• Matplotlib is used for plotting results

• Data comes in form of occupancy maps for HCAL

• Flow of one map each lumisection for every lumisection.
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REMARKS

• Slight improvement in the performance overall

• This is still a toy model with very specific examples 

• Has not been tested with actual data

• Shows potential but there is room for improvement
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