

USING MACHINE LEARNING TECHNIQUES FOR DATA QUALITY MONITORING AT CMS EXPERIMENT

GUILLERMO A. FIDALGO RODRÍGUEZ

ML HACKATHON

The tools to achieve the mission to find new physics.

16 miles of magnets and connections are kept colder than outer space, using over 100 tons of liquid helium

The LHC Tunnel

Protons race around a 27 km circuit at 99.999999% the speed of light

Protons crashing head on into each other 40,000,000 times a second

Violent collisions
corresponding to
temperatures a billion
times higher than the core
of the sun will be
produced.
That is roughly
160,000,000,000,000,000 C

The beam pipe is
evacuated to the same
vacuum as interplanetary
space
The pressure is about
1/10th that of the surface
of the moon

THE
COMPACT
MUON
SOLENOID
(CMS)
EXPERIMENT

http://cms.web.cern.ch/news/what-cms

4

THE CHALLENGE

- You have to make sure that the detector behaves well in order to perform sensible data analysis.
- Reduce man power.
 - Shifters monitor constantly the quality of the data flow.
 - Discriminate between good and bad data to have high purity
 - Build something that helps the people to minimize the time needed to spot problems and save time examining hundreds of histograms
 - Build intelligence that analyzes the data and raises alarms in case of problems. Have quick feedback.

THE CHALLENGE (2)

- Deciding the best architecture of the network is key
 - Too little and it may not be able to learn (underfitting)
 - Too big and it may learn to only identify very specific and/or unnecessary features (overfitting)
- There is no rule of thumb
 - Many, many, many..... possible combinations.

WHAT IS DATA QUALITY MONITORING (DQM)?

- Two kinds of workflows:
- Online DQM
 - Provides feedback of live data taking.
 - Alarms if something goes wrong.
- Offline DQM
 - After data taking
 - Responsible for bookkeeping and certifying the final data with fine time granularity.

HOW TO AUTOMATE THE DATA QUALITY CHECKS? USE MACHINE LEARNING!

- It's everywhere now!
 - A.I. Learning
 - Self-driving cars
 - How does Google/Facebook know what you want?
 - Face/Handwriting Recognition
- In our case everything reduces to a Classification problem
 - Anomaly Detection

OBJECTIVES

- The project aims at applying recent progress in Machine Learning techniques to the automation of the DQM scrutiny for HCAL
 - Focus on the Online DQM.
 - Compare the performance of different ML algorithms.
 - Fully supervised vs semi-supervised approach.

TOOLS AND DATA PREPARATION

TensorFlow

- Working env: python Jupyter notebook
- Keras (with Tensorflow as backend) and Scikit-learn
 - Creation of a model
 - Train it, test its performance
- The input data consists of occupancy maps
 - one map for each luminosity section
 - Used 2017 certified "good" data and generate "bad" data artificially

Machine Learning libraries

SCIKIT-LEARN

- Pre-defined models
 - Logistic Regression
 - MLP
- Not much control over the model's architecture
- Very useful for testing performance

KERAS

- Make your own models
 - A bit sophisticated
 - Only for making NN
- Neural Networks
 - Deep Convolutional
 - Best with image recognition

HOW A DEEP NEURAL NETWORK SEES

Images used

5x5 (readout channels) problematic region with fixed location 5x5 problematic region with random location

Images like these were used as inputs

How to train a model

Gradient Descent

The "Learning" in Machine Learning.

Update the values of X (punish) it when it is wrong.

$$X = X - \eta \nabla(X)$$

X: weights or biases

η: Learning Rate (typically 0.01 to 0.001)

 η : The rate at which our network learns. This can change over time with methods such as Adam, Adagrad etc. (hyperparameter)

∇(x): Gradient of X

We seek to update the weights and biases by a value indicating how "off" they were from their target.

Gradients naturally have increasing slope, so we put a negative in front of it to go downwards

Models used

- Supervised Convolutional Neural Network
 - Results
- Semi Supervised- Auto Encoder
 - Results

Supervised Model

```
model = Sequential()
model.add(Conv2D(10, kernel size=(2, 2), strides=(1, 1),input shape=input shape))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(MaxPooling2D(pool size=(2,2)))
model.add(Conv2D(8, kernel size=(3, 3), strides=(1, 1)))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(MaxPooling2D(pool size=(2,2)))
model.add(Conv2D(8, kernel size=(1,1)))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(8))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dense(3, activation='softmax'))
model.compile(loss='categorical crossentropy',
              optimizer='adam', #Adam(1r=1e-3),
              metrics=['accuracy'])
```

RESULTS

Epoch

SEMI-SUPERVISED MODEL

Auto-Encoder

- The bottleneck structures work using dimensionality reduction.
 - We are interested in seeing the features that are learned at the bottleneck stage of the AE after a successful reconstruction.
- We can use the reconstruction loss as a discriminant

- Trained only on good images
- Expected to see better reconstruction for good images and a much different reconstruction for bad images.
- Bad images have 5x5 bad regions
 - Hot
 - Dead
- Images have been normalized

SETTINGS FOR THE MODEL

^oARCHITECTURE

```
input_img = Input(shape=(input_shape)) # adapt this if using `channels first
x = Conv2D(86, (3, 3), padding='same')(input img)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(64, (3, 3), padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(32, (3, 3), padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
encoded = MaxPooling2D((2, 2), padding='same')(x)
# at this point the representation is (4, 4, 8) i.e. 128-dimensional
x = Conv2D(32, (3, 3), padding='same') (encoded)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = UpSampling2D((2, 2))(x)
x = Conv2D(64, (3, 3), padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = UpSampling2D((2, 2))(x)
x = Conv2D(86, (3, 3), padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = UpSampling2D((2, 2))(x)
decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)
autoencoder = Model(input img, decoded)
autoencoder.compile(optimizer='adadelta', loss='mse')
```


RESULTS

After testing different parameters this architecture seems to perform best for us.

RESULTS

The distribution of the error in the reconstruction confirms that they are differentiable and so we can simply place a cut and classify accordingly

Thank you!

BACKUP

- Federico De Guio, Ph.D
- Nural Akchurin, PH.D
- Sudhir Malik, Ph.D
- The US State Dept.
- The University of Michigan
- CERN/CMS
- Steven Goldfarb, Ph.D
- Jean Krisch, Ph.D

WITH SIMPLE (BINARY, FIXED LOCATION) PROBLEM SIMPLE ARCHITECTURE

NEXT ARCHITECTURE

Architecture

```
model = Sequential([
BatchNormalization(input shape=input shape))
Conv2D(8, kernel size=(3, 3), strides=(2, 2), activation='relu')
Conv2D(8, kernel size=(3, 3), strides=(2, 2), activation='relu')
Dropout (0.25)
Flatten()
Dense(2, activation='softmax')
```

RESULTS

Fixed Location

Random Location

Fixed Location

Random Location

NOW LET'S MAKE THE PROBLEM A BIT HARDER

- With random position
- Multiclass problem (good ,hot, dead)
- Same arch.

RESULTS

Epoch 141/150

Epoch 00141: val_loss improved from 0.04021 to 0.03862, saving model to best_weights.hdf5
- 1s - loss: 0.0626 - acc: 0.9844 - val_loss: 0.0386 - val_acc: 0.9908

NOW LET'S MAKE THE PROBLEM MORE REALISTIC

- With random position
- Multiclass problem (good ,hot, dead)
- Same arch.
- Only 1x1 bad channels

Good Dead Hot

Images like these were used as inputs

Epoch 250/250

Epoch 00250: val_loss did not improve
- 1s - loss: 0.3824 - acc: 0.7870 - val_loss: 0.5509 - val_acc: 0.6372

ADD A COUPLE OF LAYERS

```
model = Sequential([
Conv2D(10, kernel_size=(2, 2), activation='relu', strides=(1, 1),input_shape=input_shape),
MaxPooling2D(pool_size=(2,2)),
BatchNormalization(),
Conv2D(8, kernel_size=(3, 3), activation='relu', strides=(1, 1)),
MaxPooling2D(pool_size=(2,2)),
Conv2D(8, kernel_size=(1,1), activation='relu'),
Dropout(0.25),
Flatten(),

Dense(8,activation='relu'),
Dense(3, activation='softmax')
])
```


Epoch 250/250

Epoch 00250: val_loss did not improve

- 7s - loss: 0.2612 - acc: 0.9194 - val_loss: 0.2887 - val_acc: 0.9083

TUNING

- Now we have to find a way to a make the model perform slightly better
- Minimize the amount of false positives

HOW TO FIX THIS?

WHAT'S NEXT?

- Why and exactly what is it learning?
- Can we make it work with something more realistic?
 - 1x1 bad region (channel)
 - Can it identify what values should be expected after each lumi-section?
 - Move from artificial bad data to real cases of bad data (in progress)

With this project I've noticed

- There are many parameters to consider (architecture, nodes, optimizers)
- There is no rule that let's you know where to start or how to develop the correct model
- There is a lot of trial and error.
- You have to spend more time building the model than tuning the parameters.
- There have been many other versions of the architectures shown.
 - All show similar patterns for results

USED MODELS

For the models in the supervised approach:

- Loss is categorical cross entropy
- For the more complex models
- Optimizer is Adam or other adaptive optimizers with similar results

TOOLS AND DATA PREPARATION

- Have been familiarized with the following tools:
 - Working with data stored as hdf5 files
 - Familiarize with NumPy arrays
 - Working env: Juypiter python notebook
 - Matplotlib is used for plotting results
- Data comes in form of occupancy maps for HCAL
 - Flow of one map each lumisection for every lumisection.

REMARKS

- Slight improvement in the performance overall
- This is still a toy model with very specific examples
- Has not been tested with actual data
- Shows potential but there is room for improvement