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I The tools to achieve the mission to find new physics. *

LHC is one of the largest and truly global scientific projects

N ever, is a turning point in modern physics, big bang machine A
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The LHC Tunnel

Protons race around a

‘ 16 miles of magnets and
connections are kept
colder than outer space,
N using over 100 tons of
liquid helium

27 km circuit at Protons crashing head on
99.999999% the speed into each other 40,000,000
| of light times a second

Violent collisions
corresponding to
temperatures a billion
times higher than the core
of the sun will be
produced.

That is roughly
160,000,000,000,000,000 C

The beam pipe is
evacuated to the same
vacuum as interplanetary
space
The pressure is about
1/10th that of the surface
of the moon



CMS DETECTOR STEEL RETURN YOKE

Total weight : 14,000 tonnes 12,500 tonnes
Overall diameter : 15.0 m
Overall length ~ :28.7m
Magnetic field :3.8T

SILICON TRACKERS
Pixel (100x150 pm) ~16m* ~66M channels
Microstrips (80x180 yum) ~200m?* ~9.6M channels

SUPERCONDUCTING SOLENOID
Niobium titanium coil carrying ~18,000A

MUON CHAMBERS
Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
Endcaps: 468 Cathode Strip, 432 Resistive Plate Chambers

PRESHOWER
Silicon strips ~16m? ~137,000 channels

FORWARD CALORIMETER
Steel + Quartz fibres ~2,000 Channels

CRYSTAL
ELECTROMAGNETIC
CALORIMETER (ECAL)
~76,000 scintillating PbWO, crystals

HADRON CALORIMETER (HCAL)
Brass + Plastic scintillator ~7,000 channels

THE [
COMPACT
MUON
SOLENOID
(CMS)
EXPERIMENT

http://cms.web.cern.
ch/news/what-cms




HE CHALLENGE

* You have to make sure that the detector behaves well
in order to perform sensible data analysis.

* Reduce man power.

* Shifters monitor constantly the quality of the data flow.
* Discriminate between good and bad data to have high purity

* Build something that helps the people to minimize the time

needed to spot problems and save time examining hundreds of
histograms

* Build intelligence that analyzes the data and raises alarms in
case of problems. Have quick feedback.



THE CHALLENGE (2)

* Deciding the best architecture of the network is key

* Too little and it may not be able to learn (underfitting)

* Too big and it may learn to only identify very specific and/or unnecessary features
(overfitting)

®* There is no rule of thumb

°* Many, many, many...... possible combinations.

"Non-deep" feedforward Deep neural network
neural network

hidden laver X hidden layer 1  hidden layer 2  hidden layer 3
“ input layer

input




WHAT IS DATA QUALITY MONITORING (DQM)?

* Two kinds of workflows:

®* Online DQM
) e Londitions . Analysis
* Provides feedback of live data taking. Conditions - D
* Alarms if something goes wrong. TierTs o
Release
. Validation
* Offline DQM st 4

Simulation
Validation

* After data taking

* Responsible for bookkeeping and certifying the final data with fine time
granularity.






HOW TO AUTOMATE THE DATA QUALITY CHECKS?
USE MACHINE LEARNING!

* |t's everywhere now!
* Al Learning {

* Self-driving cars
* How does Google/Facebook know what you want?

* Face/Handwriting Recognition

* |In our case everything reduces o a
Classification problem

STRIKE

* Anomaly Detection



OBJECTIVES

* The project aims at applying recent progress in Machine Learning
techniques to the automation of the DQM scrutiny for HCAL
* Focus on the Online DOQM.
* Compare the performance of different ML algorithms.

* Fully supervised vs semi-supervised approach.
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OOLS AND DA

AP

REPA

* Working env: python Jupyter notebook

* Keras (with Tensorflow as backend) and Scikit-learn

* Creation of a model

* Trainit, test its performance

RA

* The input data consists of occupancy maps

* one map for each luminosity section

[@]\

* Used 2017 certified “good” data and generate “bad” data

artificially




Machine Learning libraries

SCIKIT-LEARN KERAS
* Pre-defined models * Make your own models
* Logistic Regression * A bit sophisticated
* MLP * Only for making NN

* Not much control over the model’s * Neural Networks
architecture * Deep Convolutional

: * Bestwithi iti
* Very useful for testing performance BRIl ECOgnITIoN



HOW A DEEP NEURAL NETWORK SEES
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Image source: “Unsupervised Learning of Hierarchical Representations with Convolutional Deep Belief Networks" ICML 2009 & Comm. ACM 2011.
Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Ng.
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5x5 (readout channels) problematic region with fixed location
5x5 problematic region with random location
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Images like these were used as inputs




How to train a model Gradient Descent T

Update the values of X (punish) it when itis wrong.

JKF — J-Y — ??v{ }( } ¢ Global cost minimum

— Jaalwl

X weights or biases *

Meural Network n: Learning Rate (typically 0.01 to 0.001)

including connections Compare !
I::G alled we ig h 13] N  The rate at which our network leams. This can change over time with jp —

bEtW BEN NeUrons methods such as Adam, Adagrad etc. o (hypemarameter) .r'-.
Vix): Gradient of X

Neration &

We seek to update the weights and biases by a value indicating how "off”

- they wene from their tanget.
Adjust

we |g hts Gradients naturally have increasing slope, so we put a negative in front of
it to go downwands

Descending with step coefficient 0.005 (iteration 50) Descending with step coefficient 0.05 {iteration 50)

HIDDEN OUTPUT )
flx) = ¥° ¥ sinfx) flx) = % * sinix)

Start (2.53.7) 1 ' Start (2.53.7)

target: 0 _ . . . End (4.9 2371, . . .  End (5.4,-22.1)
calculated: 069 1 5 5 7 1 B 7







Supervised Model

= Sequential ()

.add (Conv2D (10, kernel size=(2, 2), strides=(1, 1),input shape=input shape))

.add (BatchNormalization ())
.add (Activation('relu'))
.add (MaxPooling2D (pool size=(2,2)))

+add (Conv2D (8, kernel size=(3, 3),strides=(1,
.add (BatchNormalization())

.add (Activation('relu'))

.add (MaxPooling2D (pool size=(2,2)))

.add (Conv2D (8, kernel size=(1,1)))
.add (BatchNormalization ())
.add (Activation('relu'))

.add (Dropout (0.25))
.add(Flatten())

.add (Dense (8) )
.add (BatchNormalization ())

.add (Activation('relu'))

.add (Dense (3, activation='softmax"'))

.compile(loss="'categorical crossentropy',
optimizer="'adam', #Adam (lr=1e-3),

metrics=["'accuracy'])

1)7))
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RESULTS

model loss

——Train
Validation

!

R i PSS 8 S

T

100 150 200

Epoch

model acc

= Train
Validation

200

True Positive Rate

accuracy score: 0.950792326939

True label

Confusion Matrix

~®- ROC curve of class 0 (area = 0.961)
®- ROC curve of class 1 (area = 1.000)
~®= ROC curve of class 2 (area = 0.961)
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False Positive Rate







Original
mushroom

Compressed Data

—ncoder

Learned
representation

* The bottleneck structures

work using dimensionality

reduction.

* \We are interested in
seeing the features

that are learned at the

bottleneck stage of the

AE after a successful
reconstruction.

* \We can use the
reconstruction loss as a
discriminant
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SETTINGS FOR THE
MODEL

Trained only on good images

Expected to see better
reconstruction for good images
and a much different
reconstruction for bad images.

Bad images have 5x5 bad
regions

* Hot
* Dead

Images have been normalized

22



ARCHITECTURE

input img = Input (shape=(input_shape))

Conv2D(8e, (3, 3), padding='same') (input img)
BatchNormalization() (x)

Bctiwvation("relu') (x)

MaxPooling2D( (2, 2}, padding='same"}) (x)
Conv2D(64, (3, 3), padding='=zame') (x)
BatchNormalization () (x)

Bctivation("relu') (x)

MaxPooling2D( (2, Z2), padding='=same") (x)
Conv2D(32, (32, 2), padding='s=ame") (x)
BatchNormalization() (x)

hﬂtlvatlun( relu') (x)

encoded = MaxPooling2D( (2, 2), padding="=ame') (x)

Mook oM oMM oMM M MK

= Conv2D(32, (3, 2), padding='=zame') (encoded)

BatchNormalization() (x)
Retivation("relu') (x)

UpSampling2D( (2, 2})) (x)

Conv2D(e4, (3, 3), padding='same') (x}
BatchNormalization () (x)
Betivation("relu') (x)

UpSampling2D({ {2, 2)} (x)

Conv2D(E&, (3, 3), padding='same') (x)
BatchNormalization() (x)
Actiwvation("relu') (x)

= UpSampling2D( (2, 2}} (x})

MoRM oM oMM oMM MMM MMN

decoded = Conv2D(1l, (3, 3), activation="sigmoid', padding='"same"') (x)

autoencoder = Model (input img, decoded)
autoencoder.compile (optimizer="adadelta", lossz='mse')

inpui_1:

InputLayer

Y

conv2d_

I: Conv2D

Y

conv2d_4: Conv2D

Y

batch_normalization_4: BatchNormalization

batch_normalization_

1: BatchNormalization

A

activation_

1: Activation

A J

max_pooling2d_

I: MaxPooling2D

4

conv2d_2: Conv2D

4

4

activation_4: Activation

up_sampling2d_1: UpSampling2D

conv2d_5: Conv2D

batch_normalization_5: BatchNormalization

batch_normalization

_2: BatchNormalization

A J

activation_

2: Activation

Y

max_pooling2d_

2: MaxPooling2D

A 4

conv2d

_3: Conv2D

X

activation_5: Activation

up_sampling2d_2: UpSampling2D

4

conv2d_6: Conv2D

batch_normalization_6: BatchNormalization

batch_normalization_

3: BatchNormalization

A J

activation_

3: Activation

Y

max_pooling2d_

3: MaxPooling2D

activation_6: Activation

4

up_sampling2d_3: UpSampling2D

conv2d_7: Conv2D




RESULTS

After testing different parameters

this architecture seems to perform
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The distribution of the error in the reconstruction confirms that they are
differentiable and so we can simply place a cut and classify accordingly
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WITH SIMPLE (BINARY, FIXED LOCATION)

PROBLEM
SIMPLE ARCHITECTURE

= Sequentia
ConvZD (64, kernel siz a 2 i 're
Flatten( ).,
Dense (2, activation="=oftmax

elu', input shape={(input shape}),

1)
model .compile (loss=

Epoch 2
1198/1198

NEXT

0.53017 - wval loss: B.0883 - wval acc: 0.4873

k:rnel_gizE:tE, 2), activation="rel: input shape=(input shape),data forma

2, 2), activation="relu'),
MaxPooling2D(poocl size=(2, 2Z}},

ConvzD(c4, (3, 3), activation="zrelu'},
ConvZD (a4, 2, 2}, activation="relu"},

Flatten( ).,
Dense (2, activation=

="adadelta'", metrics=["accu:

1188/11

i — wal acc: 0.302



Architecture

= Sequentia
BatchNormalization(input shape=input shape))

o |

ConvZD(E, kermnel s=size=(3, 3), strides=(Z, Z),

ConvZD(E, kernel size=(3, 3), strides=(<, Z),

ol =

Dropout (0.23)
Flatten()

activation="=softmax

activation="relu')
activation="relu')
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model loss

— Train
Validation

Epoch

model acc

— Train
Validation

25

Fixed Location

RESULTS

model loss

= Train
“alidation

Epoch

model acc

— __ ——

== Train
“alidation

Random Location




Confusion Matrix Confusion Matrix
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NOW LET'S MAKE THE PROBLEM A BIT
HARDER

* With random position
* Multiclass problem (good ,hot, dead)

* Same arch.



Epoch 141/150

RESU LTS Epoch 00141: wal loss improved from 0.04021 to 0.03862, =aving model to best weights.hdfs
- 1s - loss: 0.0626 - acc: 0.9844 - wval loss: 0.03B& - wval acc: 0.89808

model loss

= Traim
Validation

Confusion Matrix

s

T T
120 140
Epoch

True label

model acc

1 —— Train
Validation

A

4
|-II' |
[

Predicted label

T T
120 140




NOW LET'S MAKE THE PROBLEM MORE
REALISTIC

* With random position
* Multiclass problem (good ,hot, dead)
* Same arch.

* Only 1x1 bad channels



Dead Hot

36

Images like these were used as inputs



Epoch 250/2350
Epoch 00250: val loss did not improve
- 1z - loss: 0.3824 - acc: 0.7870 - wval loss: 0.5509 - wval acc: 0.8372

model loss

— Train
Validation

Confusion Matrix

] L) L)
100 150 200
Epoch

True label

maodel acc

1 = Train
Validation

T
III{. I(“H"I“;H"I__ I |IlJI,I'lr'r-'1"..IrIJ|F|-'II|IIi'I W‘I"h:‘dl"\ﬂn:"-*"lhﬂl‘ﬁﬂir:"hllll.l r. Iflr

|

"

Predicted label

T T T T
100 150 200 250
Epoch




ADD A COUPLE OF LAYERS

model = Seqguential ([

Conv2D (10, kermel =ize=(2, 2), activation='relu', strides=(1, 1),input shape=input shape),

MaxPoolingdD(pool size=(Z, <)),
BatchMormalization(),
ConvZD(E, kernel =size=(2, 3), actiwvation="relu', =trides=(1, 1)),

o | o |

MaxPoolingZD(pool size=(Z,Z)),

ConvZD(E, kernel size=(1,1), activation="relu'),
Dropout {(0.23),
Flatten(),

Dense (B, activation="relu'),
Dense (3, activation="softmax')

1)
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True label

True Positive Rate

Confusion Matrix Epoch 250/250
Epoch 00230: wal loss did not improve
- T3 - loss: 0.28l2 - acc: 0.8184 - wval loss:

moadel loss

0.2BB7 - val_ac'.c'.: 0.90E83

— Train
Validation

T T
100 150

Epoch

model acc

—— Train
Validation

=@= ROC curve of class O (area = 0.932)
®= ROC curve of class 1 (area = 0.968)
=@= ROC curve of class 2 (area = 0.953)

) ) - T T
0.4 0.6 0.5 10 100 150
Falze Positive Rate Epoch

1 1
200 250
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This Photo by Unknown Author is licensed under CC BY-SA

HOW TO FIX THIS?

E NEE? 1060

- ‘ rerpErEe wl
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https://math.stackexchange.com/questions/447747/how-to-prove-triangle-inequality-for-p-norm
https://creativecommons.org/licenses/by-sa/3.0/

 WHAT'S NEXT?

* Why and exactly what is it learning?

* Can we make it work with something more realistic?

* 1x1 bad region (channel)
* Canitidentify what values should be expected after each lumi-section?

* Move from artificial bad data to real cases of bad data (in progress)

/



* With this project I've noticed
* There are many parameters to consider (architecture, nodes, optimizers)

* Thereis no rule that let's you know where to start or how to develop the correct
model

* Thereis alot of trial and error.

* You have to spend more time building the model than tuning the parameters.

* There have been many other versions of the architectures shown.

* All show similar patterns for results
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USED MODELS

For the models in the supervised approach:

* Lossis categorical cross entropy

For the more complex models

* Optimizer is Adam or other adaptive optimizers with

similar results
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OOLS AND DATA PREPARATION

* Have been familiarized with the following tools:

Working with data stored as hdf5 files
Familiarize with NumPy arrays
Working env: Juypiter python notebook
Matplotlib is used for plotting results

* Data comes in form of occupancy maps for HCAL

Flow of one map each lumisection for every lumisection.

45



REMARKS

* Slight improvement in the performance overall
* This is still a toy model with very specific examples
* Has not been tested with actual data

* Shows potential but there is room for improvement
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