LEGO® Deep Learning
Medium Brick Box (23 pcs)

— -

3 . L =~
LA 3
'}‘Y‘ g N
10696 & G 8/
LEGO* Medium BT~ o SO 2
Creative 2= () = 5t
Brick Box ¢ o P
N A 4 2\
@ O 2
o= =) ' &
Py 4
Batding Toy) \ O
o k \ @
\ \
NG: ING HAZAI

ML4Jets 2020, January 15, New York University
Gilles Louppe, g.louppe@uliege.be

;!; LIEGE
universite

1/23

mailto:g.louppe@uliege.be

Feed forward models Sequence Prediction Seq2Seq Attention & Pointers

il M S b ==~ LY
~ . XX NE1111111 0 111411
s o] [0] [T [e] DN NE NEEEEEEE
Read/Write memories Temporal Hierarchies Key,Value memories
{input} ; Pt ¥ e

AT

|
|
) I

Sl -
e ¥
iy W g W00 L
=AAAAALAA 1+
i.

+

&

8
—a(+]

Figure credits: Jeff Dean, Chris Olah, Santoro et al 2016, Koutnik et al 2014, van
den Oord et al 2016, Miller et al 20186, Vinyals et al 2016, Vaswani et al 2017

The toolbox

Credits: Oriol Vinyals, 2020. 1/23

https://twitter.com/OriolVinyalsML/status/1212422497339105280

People are now building a new kind of software by assembling networks of
parameterized functional blocks and by training them from examples using
some form of gradient-based optimization.

An increasingly large number of people are defining the networks procedurally in a
data-dependent way (with loops and conditionals), allowing them to change
dynamically as a function of the input data fed to them.

Yann LeCun, 2018.

2/23

DL as an architectural language

3/23

Inputs and outputs Architectures Losses

4/23

Inputs/Outputs

Vectorized attributes, tabular data

Images

e Sequences (words, speech, images, videos)

Graphs
Structured data

All may serve as both inputs and outputs.

5/23

Logistic regression

o P 9

e |/O:vectorized inputs — class e

labels
e Architecture: logistic unit @ @
e Loss:cross-entropy
‘ :: ’—) X add > o —)‘ : ’

y=o(wix+b) @
ot

The logistic unit

22

6/23

Multi-layer perceptron 555

®9 96
ACDQ."qmm,mm 9<>

S R OO0 Outputs

Ml
#

// R

4N

——= 0000000 Hiddens -
posing layers in series

Ny
\&\\g}};é{,}}g{/l}:ﬁ/ results in the MLP (or fully
‘)9?,.;:0’;:.1‘414; connected feedforwards nets).
...lxvf//'ai!}{\irz'\i

OOOOOO0 Inputs

Y
Q

A 4
Q

h 4

matmul

Stacking logistic units in parallel
resultsin a layer.

o
9’0

7/23

Convolutional networks

L 10 output units) [3
- / fully connected
» ~ 300 links

layer H3
30 hidden units

fully connected

e |/O:images, audio, text — ~ 6000 links

class labels or regression layer H2

12 x 16=192
targets hidden umts ~ 40,000 links
. i from 12 kernels
e Architecture: 5x5x8
. : layer H1
convolutions, pooling 19 % 64 = 768

hidden units
e Loss: cross-entropy, .

negative log-likelihood

~20,000 links
rom 12 kernels
Ex 5

256 input units

Convolutional networks extend fully connected
nets with convolutional and pooling layers.

Locality and translation invariance

e Locality: objects tend to have a local spatial support.

&

e Translationinvariance: object appearence is independent of location.

Convolution
/ // /| / 1/ /
Y. WiVA Y A s
U ED L5 A weight
/%////’/ - //// s sharing
A 4 22"
y//// 1 ////%5 -
A = %7 Z2%i

locally-connected units

fully-connected unit with 3x3 receptive field

Credits: Reed, de Freitas, and Vinyals, "Deep Learning: Practice and Trends", 2017.

AvaY,
/ '///
N/
Wl LT
% U T
W7 ZA"
//

convolutional units
with 3x3 receptive field

9/23

Skip connections

152 layers
A
\

\
\
\
\ 1.7
221ayers | | 19 layers
5
\ 6.7 73
.57 8 layers layers

RC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10

I WAS WINNING
IMAGENET

"
'h-*
W
-
==
2
-

|

Training deep networks leads to vanishing gradients.

Skip connections provide a brick to make them

trainable.

weight layer

lrelu

weight layer

X
identity

10/23

ResNet-34 DenseNet

34-layer residual

image

wewen]

aacl, /2

33 cany, 128 - o
64 64
128 64 64 2
input
im:fg > NN output
i segmentation
tile N
2l 2 & 8 map
o ofl | I I
FEE ald ds
2129
gl el e
5518
'128 128
256 128
=) ol O
B Q L g
zlcl&
| P, s t
[sdconv,26 | A b bt '%[I'?I?I =»conv 3x3, ReLU
SE E Sl My
Ty f~ = ~» copy and crop
512 512 1024 512
-l — - # max pool 2x2
© ¥ 10m ds B 4 up-conv 2x2
[> N >
S % => conv 1x1
)

Credits: He et al, 2015, Huang et al, 2016, Ronneberger et al, 2015. 11/23

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1505.04597

(a) without skip connections (b) with skip connections

Credits: Li et al, 2017. 12/23

https://arxiv.org/abs/1712.09913

Recurrent and attention networks

= 2

v
e |/O:sequences — class
labels, regression targets,
or sequences @
e Architecture: recurrent f N
networks, attention ¢ ¢

¢ (o)
e Loss: cross-entropy, @ @ @
negative log-likelihood

RNNs are equipped with an internal state, which
acts as memory cell. They are equivalent to
feedforward nets but with shared layers.

13/23

Sequence-to-sequence

Encoder She — is > eating—> a > green — apple

Context vector (length: 5)

l—< [0.1,-0.2, 0.8, 1.5, -0.3] ><

Decoder i > FE O i e = G - FER

The seq2seq model is an encoder-decoder architecture composed of:

e anencoder RNN that processes the input sequence and compresses the
information into a context vector ¢ of fixed length;

e adecoder RNN initialized with the context vector that emits an output
seguence.

Credits: Lilian Weng, 2018. 14/23

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

Attention

Decoder: RNN with input from
previous state + dynamic
context vector.

I : .
I Attentl'on layer: parameterized Additive Attention
/l by a simple feed-forward network

Encoder: bidirectional RNN

X5 X X X, (Source)

For infering the next state s;, the attention layer builds the dynamic context c;

which estimates how strongly the current state is correlated with (or attends to)
other elements.

cy = Z atih; at; = softmax(score(s:—1,h;))
i

Credits: Bahdanau et al, 2015. 15/23

https://arxiv.org/pdf/1409.0473.pdf

Transformers

Output
Probabilities

Multi

-head attention

led Dot-Product
Attention

Scal
Add & Norm
Add & Norm -
Multi-Head ; l
Feed Attention . l
Forward Nx
N Add & Norm
Add & Norm WEErea
Multi-Head Multi-Head
Attention Attention
t t
. J | J
Positional o) Positional
Encodin 2 i
g Encoding
Input Output
Embedding Embedding

I !

Inputs Outputs
(shifted right)

Transformer networks compose multi-head self-
attention mechanisms for sequence-to-sequence

modeling, without recurrent units.

Credits: Vaswani et al, 2017.

Zoom-In!

Scaled dot-product attention

Zoom-In!

softmax(QTK:)V

Self-Attention

Convolution

c LN

16/23

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Neural computers ’

Input Output

vt

Controller
k; / \
Read heads Write heads
weighted sum erase + add
W (S ag

(Memory M, € RV*M)

Networks can be coupled with memory storage to produce neural computers:

e The controller processes the input sequence and interacts with the memory
to generate the output.

e Theread and write operations attend to all the memory addresses.

17/23

Programs as neural nets

e |/O:structured data (one or more sources) — class labels, regression targets
or structured data

e Architecture: graph networks, dynamic graphs of computation

e Loss: cross-entropy, negative log-likelihood

A graph is created on the fl B BN OB
5hap Y W R W, x
from torch.autograd import Variable -. o . " o

Variable (torch.randn (1, 10))

x = Va
prev_h = Variable(torch.randn(1l, 20))
W_h = Variable(torch.randn (20, 20))
W x = Variable(torch.randn (20, 10))

18/23

Recursive nets for jet physics

e Use sequential recombination jet algorithms (kt, anti-kt,
etc) to define computational graphs (on a per-jet basis).

e Theroot nodein the graph provides a fixed-length
embedding of a jet.

Credits: Louppeet al, 2017

Classifier

Jet embedding

19/23

https://arxiv.org/abs/1702.00748

Neural message passing ’

Algorithm 1 Message passing neural network

Require: N x D nodes x, adjacency matrix A
h <—Embed(x)
fort=1,...,T do
m <— Message(A, h)
h < VertexUpdate(h, m)
end for
r = Readout(h)
return Classify(r)

Even though the graph topology is dynamic, the unrolled computation is fully
differentiable. The programis trainable.

Credits: Henrion et al, 2017. 20/ 23

https://dl4physicalsciences.github.io/files/nips_dlps_2017_29.pdf

Further examples of differentiable programs

105.11885v2 [cs.LG] 2 Nov 2019

Differentiable Ranks and Sorting
using Optimal Transport

Marco Cuturi Olivier Teboul Jean-Philippe Vert
Google Research, Brain Team
{cuturi,oliviert, jpvert}@google.com

Abstract

Sorting is used pervasively in machine leaming, either to define elementary algo-
rithms, such as k-nearest neighbors (k-NN) rules, or to define test-time metrics,
such as top-k classification accuracy or ranking losses. Sorting is however a poor
mach for the end-to-end, automatically differentiable pipelines of deep learning.
Indeed, sorting procedures output two vectors, neither of which is differentiable:
the vector of sorted values is piecewise linear, while the sorting permutation itself
(or its inverse, the vector of ranks) has no differentiable properties to speak of, since
it is integer-valued. We propose in this paper o replace the usual sort procedure
with a differentiable proxy. Our proxy builds upon the fact that sorting can be
seen as an optimal assignment problem, one in which the n values to be sorted are
matehed to an awxiliary probability measure supported on any increasing family
of n target values. From this observation, we propose extended rank and sort
operators by considering optimal transport (OT) problems (the natural relaxation
for assignments) where the auxiliary measure can be any weighted measure sup-
ported on rn increasing values, where m # n. We recover differentiable operators
by regularizing these OT problems with an entropic penalty, and solve them by
applying Sinkhorn iterations. Using these smoothed rank and sort operators, we
propose dift proxies for the i 0/1 loss as well as for the
quantile regression loss.

)3.00443v4 [cs.LG] 14 Oct 2019

OptNet: Differentiable Optimization as a Layer in Neural Networks

Brandon Amos' J. Zi

Abstract

This paper presents OptNet, a network architec-
ture that integrates optimization problems (here.
specifically in the form of quadratic programs)
as individual layers in larger end-to-end train-
able deep networks. These layers encode con-
straints and complex dependencies between the
hidden states that traditional convolutional and
fully-connected Tayers often cannot capture. In
this paper, we explore the foundations for such
an architecture: we show how techniques from
sensitivity analysis, bilevel optimization, and im-
plicit differentiation can be used to exactly differ-
entiate through these layers and with respect 1o
layer parameters; we develop a highly efficient
solver for these layers that exploits fast GPU-
based baich solves within a primal-dual interior
point method, and which provides backpropaga-
tion gradients with virtually no additional cost on
top of the solve; and we highlight the applica-
tion of these approaches in several problems. Tn
one notable example, we show that the method
is capable of learning to play mini-Sudoku (4x4)
given just input and output games, with no a pri-
ori information about the rules of the game; this
hiohlichts the ahility of anr architecture fo learn

o Kolter '

tal can reduce the overall depth of the network while pre-
serving richness of representation. Specifically, we build a
framework where the output of the i + 1th layer in a net-
work is the solution 10 a constrained optimization problem
based upon previous layers. This framework naturally en-
compasses a wide variety of inference problems expressed
within a neural network, allowing for the potential of much
richer end-to-end training for complex tasks that require
such inference procedures.

Concretely, in this paper we specifically consider the task
of solving small quadratic programs as individual layers.
These optimization problems are well-suited to captur-
ing interesting behavior and can be efficiently solved with
GPUs. Specifically, we consider layers of the form

1
Sia1 = arguuin 257Q(x)z + (2" x
y b(z) ®
h(z)

subject to A(z;)z =
Gzi)z =

where z is the optimization variable, Q(z:). g(zi), A(=z).
b(z), G(2;). and h(z;) are parameters of the optimization
problem. As the notation suggests, these parameters can
depend in any differentiable way on the previous layer z;,
and which can eventually be optimized just like any other

weiahts in a nenral netwnrk Thace lavers ran ha Taamed

21/23

Credits:

LEGO® Creator Expert

P —

AlphaStar

Outcome Prediction

Raw Observations Neural Network Activations
S - l ‘ t
e i .

. @
]

Value Action type Delay Queued

Lese

onsidered Build/Train
QO0QQo00Q0000

Selected units

Value Network

Pointer Network Attention

Embedding Embedding

MLP MLP

Legend
Scalar encoder Entity encoder Spatial encoder
MLP Transformer ResNet Action
Qutput _—
Neural network
Baseline features Scalar features Entities Minimap Input see=esee -

Target unit Target point

Deconv ResNet

Connection

connection

22/23

https://www.nature.com/articles/s41586-019-1724-z

Conclusions

e Deep Learningis more than
feedforward networks.

e |tis a methodology:

o assemble networks of parameterized
functional blocks

o train them from examples using some
form of gradient-based optimisation.
e Bricks are simple, but their nested

composition can be arbitrarily
complicated.

e The Large Creative Brick Box
includes many more bricks!

23/23

Credits

This talk is strongly inspired from "Deep Learning: Practice and Trends" (NIPS
2017 Tutorial) by Scott Reed, Nando de Freitas and Oriol Vinyals.

References

Scott Reed, Nando de Freitas and Oriol Vynials, "Deep Learning: Practice and
Trends", 2017. [url]

Gilles Louppe, "INFO8010 Deep Learning, ULiege", 2018-2019. [url]

Lilian Weng, "Attention? Attention!",2018. [url]

Jay Alammar, "The lllustrated Transformer", 2018. [url]

23/23

https://docs.google.com/presentation/d/e/2PACX-1vQMZsWfjjLLz_wi8iaMxHKawuTkdqeA3Gw00wy5dBHLhAkuLEvhB7k-4LcO5RQEVFzZXfS6ByABaRr4/pub
https://github.com/glouppe/info8010-deep-learning
https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
https://jalammar.github.io/illustrated-transformer/

