CapsNets Continuing the **Convolutional Quest**

Based on: 1906.11265

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE DER BILDUNG

Universität Hamburg DER FORSCHUNG | DER LEHRE |

S. Diefenbacher

CapsNets Continuing the Convolutional Quest

Sascha Diefenbacher, Herman Frost, Gregor Kasiezcka, Tilman Plehn, Jennifer M. Thompson

DESY.

ZUKUNFT

ML4Jets 2020

UNIVERSITÄT **HEIDELBERG** SEIT 1386

- Movement towards calibration, stability and insight \bullet

S. Diefenbacher

CapsNets Continuing the Convolutional Quest

1902.09914

Neural network classifiers proven and invaluable tool in particle physics

 Understanding network decision process Insight into underlying physics

CapsNets Continuing the Convolutional Quest

Understanding Decisions

hidden layer 1

- Standard DNN: Only value of the output has meaning
- Intermediate not individually expressive

Difficult to interpret

New approach: Capsule Networks

- www.digitaltrends.com hidden layer 2

CapsNets Continuing the Convolutional Quest

Full Event Tagging

- Capsules well suited for full events
- Signal:

 Event level kinematics easier to understand than jet variables Background: Z' (1 TeV) decaying to top pairs QCD di-top processes

- Preselection:
 - Number of jets ≥ 2 (anti k_t , $\Delta R = 1.0$)
 - $p_{Tjet1,2} > 350 \, \text{GeV}$
 - $|\eta_{jet1,2}| < 2.0$ \bullet

S. Diefenbacher

 $pp \to t\bar{t} \ [QCD]$

CapsNets Continuing the Convolutional Quest

Capsule Networks

Capsule Networks Capsule Entries $\mathbf{X}_{\mathbf{2}}$ Neuron

- Capsule: Group of neurons lacksquare
- Capsule outputs describe instantiation vectors
 - Entries of vector describes properties of object
 - Length corresponds to probability of object existence

Interpretability through meaningful entries

S. Diefenbacher

S. Sabour, N. Frosst, G. E. Hinton: **Dynamic Routing Between Capsules:** 1710.09829

CapsNets Continuing the Convolutional Quest

Further Features

More information than just feature presence

Relative position of features taken into account

Can learn event level kinematics

S. Diefenbacher

CapsNets Continuing the Convolutional Quest

https://pechyonkin.me/capsules-1/

- Each wector weighted by matrix $w_{i,i'}$
- Contributions combined through dynamic routing

S. Diefenbacher

CapsNets Continuing the Convolutional Quest

Example: Human Face

- 3 Input capsules describe
 - 1. Mouth
 - 2. Nose
 - 3. Left eye
- Entires: X and Y positions
- Aim: Combine into face capsule

CapsNets Continuing the Convolutional Quest

Example: Human Face

 Capsules make prediction about face position

CapsNets Continuing the Convolutional Quest

Example: Human Face

- Capsules make prediction about face position
- Predicted positions given by Capsule times weight matrix

$$u_j = \mathbf{W}_{j,1} x_j$$

- - Combined face capsule large Classified as face

CapsNets Continuing the Convolutional Quest

Example: Human Face

Predictions are off if features at wrong relative positions

CapsNets Continuing the Convolutional Quest

Example: Human Face

- Predictions are off if features at wrong relative positions
- Predicted positions do not agree
 - Face capsule should short
 - Classified as not-face

Need algorithm that enhances agreeing contributions

CapsNets Continuing the Convolutional Quest

Dynamic Routing Before Routings

Routing by agreement algorithm:

• Calculate weighted average

$$v = \sum_{j} c_{(j)} u_{(j)}$$

• Update weights $c_{(j)}$ based on $v \cdot u_{(j)}$

CapsNets Continuing the Convolutional Quest

Dynamic Routing Before Routings

Routing by agreement algorithm:

Calculate weighted average

$$v = \sum_{j} c_{(j)} u_{(j)}$$

• Update weights $c_{(j)}$ based on $v \cdot u_{(j)}$

CapsNets Continuing the Convolutional Quest

Dynamic Routing After 2 Routings

Routing by agreement algorithm:

Calculate weighted average

$$v = \sum_{j} c_{(j)} u_{(j)}$$

• Update weights $c_{(j)}$ based on $v \cdot u_{(j)}$

CapsNets Continuing the Convolutional Quest

Dynamic Routing

Routing by agreement algorithm:

Calculate weighted average

$$v = \sum_{j} c_{(j)} u_{(j)}$$

• Update weights $c_{(j)}$ based on $v \cdot u_{(j)}$

CapsNets Continuing the Convolutional Quest

Dynamic Routing After 6 Routings

Routing by agreement algorithm:

Calculate weighted average

$$v = \sum_{j} c_{(j)} u_{(j)}$$

• Update weights $c_{(j)}$ based on $v \cdot u_{(j)}$

CapsNets Continuing the Convolutional Quest

Dynamic Routing After 6 Routings

Routing by agreement algorithm:

Calculate weighted average

$$v = \sum_{j} c_{(j)} u_{(j)}$$

- Update weights $c_{(j)}$ based on $v \cdot u_{(j)}$
- Contributions agreeing with overall consensus preferred
- Longer vectors weighted even more

Enhances agreeing contributions

CapsNets Continuing the Convolutional Quest

Activation Function

- Default functions ill suited • Specialised 'squashing' function: $\vec{v} \rightarrow \vec{v}' = \frac{\vec{v}^2}{1 + \vec{v}^2} \hat{v}$
- Quadratic suppression problematic
 - Value underflow
 - Vanishing gradients

Linearised squashing for deep Caps $\vec{v} \rightarrow \vec{v}' = \frac{|\vec{v}|}{\sqrt{1 + \vec{v}^2}}\hat{v}$

S. Diefenbacher

CapsNets Continuing the Convolutional Quest

CapsNet Architecture

- Convolutions still invaluable for feature extraction
- Replace dense layers of CNN with capsules

- Number of output capsules equal to classes in dataset \bullet
- ength of output capsules are used as classification scores.
- Full event input: 180x180 pixels

S. Diefenbacher

CapsNets Continuing the Convolutional Quest

Performance & Insight

Di-Top Benchmarking

- Initial comparison agains BDT
 - BDT Input: $m_{jj}, p_{T1}, p_{T2}, \eta_1, \eta_2$
- Convolution structure insufficient
 - Can't learn event level features
 - Specialised architecture needed

S. Diefenbacher

CapsNets Continuing the Convolutional Quest

2428	2v16

x5 conv 3x3 Capsule Layers str=1

S. Diefenbacher

CapsNets Continuing the Convolutional Quest

'Pool'-Caps architecture beats both BDT and CNN Capsule network maintain competitive performance

S. Diefenbacher

CapsNets Continuing the Convolutional Quest

Understanding Capsules

- Proof on concept, performance less important
 - Simplified architecture for ease of understanding

 Most important: Only two-dimensional output capsules Instantiation vectors plot-able

S. Diefenbacher

Signal Cap for Signal

S. Diefenbacher

- Capsule outputs plotted in 2d
- Vector length ~ 1.0
 - Correct prediction

CapsNets Continuing the Convolutional Quest

Signal Cap for Signal

-1

-1

- T

 $-\pi$

S. Diefenbacher

- Capsule outputs plotted in 2d
- Vector length ~ 1.0
 - Correct prediction
- Map back to event images
- Tops form Z' decay are back-to-back in Z' rest frame
 - \blacksquare Both jets have similar η

 π

0

 \mathcal{O}

Background Cap for Background

S. Diefenbacher

CapsNets Continuing the Convolutional Quest

 $-\pi$

 ϕ

 π

- 1

- Capsule outputs plotted in 2d
- Vector length ~ 1.0
 - Correct prediction
- Map back to event images
- Tops form Z' decay are back-to-back in Z' rest frame
 - Both jets have similar η
- QCD jets are back to back in detector frame
 - Jets have 'opposite' position
 - Angle correlated to physics

Conclusion

- Capsules show great potential for explainability
 - Maintains CNN performance
 - Can handle whole event inputs
- Multi-classifier for Z', di-top, di-light-jet
 - Works better than Z' vs (tt + light light)
- High activity events
 - Works on $t\bar{t}H$
- Full paper <u>1906.11265</u> \bullet

ML4Jets 2020

CapsNets Continuing the Convolutional Quest

