CLARIANT LORENTZ COVARIANT NEURAL NETWORK

Alexander Bogatskiy, Brandon Anderson, Risi Kondor, David Miller, Jan Offermann, Marwah Roussi

[ml4a.github.io]

[NOAA]

TRANSLATIONAL SYMMETRY

Solution: CNN's

TRANSLATIONAL SYMMETRY

Solution: CNN's

[Cohen & Welling: Group equivariant CNNs (ICML 2016)]

Solution: randomly rotated training samples?

preprocessing?

Solution: randomly rotated training samples?

preprocessing?

Solution: convolutions on Lie groups

[Cohen & Welling: Group equivariant CNNs (ICML 2016)] [Cohen & Welling: Steerable CNNs (ICLR 2017)]

- Greatly reduce the number of learnable parameters
- Reduce the number of training samples
- Improve generalization and regression ability
- Provide physically interpretable models
- Bring elegance and mathematical transparency
- Build on physical principles of symmetries and constraints

Any continuous function can be represented:

$$F(x_1, ..., x_n) = \sum_{k=0}^{2n \cdot d} F_k \left(\sum_{i=1}^n f_{ki}(x_i) \right)$$

[Kolmogorov-Arnold representation theorem]

Any continuous function can be represented:

$$F(x_1, ..., x_n) = \sum_{k=0}^{2n \cdot d} F_k \left(\sum_{i=1}^n f_{ki}(x_i) \right)$$

[Kolmogorov-Arnold representation theorem]

Symmetric functions:

$$F(x_1, \dots, x_n) = \hat{F}\left(\sum_i f(x_i)\right)$$

[Zaheer et al. (Deep Sets, 2017)]

Group equivariant neural networks (Cohen & Welling, 2016)

Harmonic networks: deep translation and rotation equivariance (Worrall, Garbin, Turmukhanbetov & Brostow, 2016)

Steerable CNNs (Cohen & Welling, 2017)

On the generalization of convolution and equivariance (Kondor & Trivedi, 2018) Intertwiners between induced representations (Cohen, Geiger & Weiler, 2018) 3D steerable neural networks (Weiler, Geiger, Wellig, Boomsma & Cohen, 2018) Gauge equivariant neural networks (Cohen, Weiler, Kicanaoglu, Welling, 2019) Tensor field networks (Thomas, Smidt, Kearns, Yang, Li Kohlhoff & Riley, 2018) Relativistic Harmonic Networks (Chase Shimmin @ Boost 2019) Cormorant: Covariant Molecular Neural Networks (Anderson, Hy & Kondor, 2019)

Activations valued in a vector space

Activations valued in a vector space

learnable linear operation

- Activations valued in a vector space
- learnable linear operation
- composable nonlinear operation

- Activations valued in vector representations of a group
- Equivariant learnable linear operation
- Equivariant composable nonlinear operation

- Activations valued in vector representations of a group
- Equivariant learnable linear operation ("commutes" with the action of the group)
- Equivariant composable nonlinear operation

- Activations valued in vector representations of a group
- Equivariant learnable linear operation

("commutes" with the action of the group)

Equivariant composable nonlinear operation

(maps representations to representations)

I. MIXING IRREDUCIBLES

Finite-dimensional representations of the Lorentz group are **decomposable**, i.e. are direct sums of irreps.

$$W: R \to R', \quad W \cdot \rho(g) = \rho'(g) \cdot W$$

Schur's lemma implies that *W* acts as scalar multiplication on each irrep, and only linearly combines vectors of the same weight.

Activations need to be stored as collections of irreducible components.

II. CLEBSCH-GORDAN PRODUCT

The "only" bilinear equivariant operation mapping two representations to another one is the **tensor product**

$$\bigotimes : R_1 \times R_2 \to R_3$$
$$\rho_1(g) \otimes \rho_2(g) = C_{\rho_1,\rho_2} \left[\bigoplus_{\rho} \bigoplus_{1}^{\mu(\rho)} \rho(g) \right] C_{\rho_1,\rho_2}^{\dagger}$$

Since our linear operation requires knowledge of irreducible components, each product must be followed by a **Clebsch-Gordan decomposition**.

II. CLEBSCH-GORDAN PRODUCT

The "only" bilinear equivariant operation mapping two representations to another one is the **tensor product**

$$\bigotimes : R_1 \times R_2 \to R_3$$
$$\rho_1(g) \otimes \rho_2(g) = C_{\rho_1,\rho_2} \left[\bigoplus_{\rho} \bigoplus_{1}^{\mu(\rho)} \rho(g) \right] C_{\rho_1,\rho_2}^{\dagger}$$

Since our linear operation requires knowledge of irreducible components, each product must be followed by a **Clebsch-Gordan decomposition**.

- N particles with input 4-momenta p_i^{μ}
- Nactivations \mathcal{F}_i at each level live in representations of the Lorentz group
- The update rule involves pair interactions

$$\mathscr{F}_i \mapsto W \cdot \left(\mathscr{F}_i \oplus \mathscr{F}_i^{\otimes 2} \oplus \sum_j f\left(p_{ij}^2\right) \cdot p_{ij} \otimes \mathscr{F}_j \right)$$

- Arbitrary traditional sub-networks can be applied to Lorentz invariants
- Output layer sums over i and projects onto invariants (or other irrep)

$$\mathcal{M}^{2} = \frac{1}{4} \frac{(2g_{c})^{4}}{((p_{1} - p_{3})^{2} - m_{\gamma}c^{2})^{2}} \left[p_{1} \cdot p_{3} + m_{e}c^{2}\right] \left[p_{2} \cdot p_{4} + m_{\mu}c^{2}\right]$$

*IRC Safety to be addressed separately

*

PERFORMANCE

Relative invariance within 10⁻⁹ using double precision Relative invariance within 10⁻² limited by floating point precision

TOP TAGGING CLASSIFIER

Dataset: [Butter, Kasieczka, Russell & Russell (Deep-learned Top Tagging with a Lorentz Layer) arXiv: 1707.08966]

	AUC	Acc	$1/\epsilon_B \ (\epsilon_S = 0.3)$			#Param
			single	mean	median	
CNN	0.981	0.930	$914{\pm}14$	$995{\pm}15$	975 ± 18	610k
ResNeXt	0.984	0.936	1122 ± 47	1270 ± 28	$1286{\pm}31$	$1.46\mathrm{M}$
TopoDNN	0.972	0.916	$295{\pm}5$	382 ± 5	378 ± 8	59k
Multi-body N -subjettiness 6	0.979	0.922	$792{\pm}18$	$798{\pm}12$	$808{\pm}13$	57k
Multi-body N -subjettiness 8	0.981	0.929	$867{\pm}15$	$918{\pm}20$	$926{\pm}18$	58k
$\operatorname{TreeNiN}$	0.982	0.933	$1025{\pm}11$	$1202{\pm}23$	1188 ± 24	34k
P-CNN	0.980	0.930	$732{\pm}24$	$845{\pm}13$	834 ± 14	348k
ParticleNet	0.985	0.938	$1298{\pm}46$	$1412{\pm}45$	$1393 {\pm} 41$	498k
LBN	0.981	0.931	$836{\pm}17$	$859{\pm}67$	$966{\pm}20$	705k
LoLa	0.980	0.929	$722{\pm}17$	$768{\pm}11$	$765{\pm}11$	127k
LDA	0.955	0.892	$151{\pm}0.4$	$151.5{\pm}0.5$	$151.7{\pm}0.4$	184k
Energy Flow Polynomials	0.980	0.932	384			1k
Energy Flow Network	0.979	0.927	$633{\pm}31$	$729{\pm}13$	$726{\pm}11$	82k
Particle Flow Network	0.982	0.932	891 ± 18	1063 ± 21	1052 ± 29	82k
CLARIANT	0.970	0.922	426			3k

[Kasieczka et. al. (ML Landscape of top taggers, 2019)]

[Xia et. al. (ResNeXt, 2016)]
[Moore at. al. (Multi-body N-subjettiness, 2018)]
[Qu & Gouskos (ParticleNet, 2019)]
[Thaler et. al. (Energy/Particle Flow Polynomials, 2018/19)]
[Butter et. al. (LoLa – Lorentz Layer, 2018)]

FUTURE WORK AND POTENTIAL EXTENSIONS

- Complete hyperparameter optimization;
- Include particle information (label, charge, spin, ...);
- Regression tasks and measurements:
 - invariant mass detection,
 - covariant 4-momentum measurements;
- Detection of hidden symmetries;
- Multiple symmetries combined (Standard Model?);

THE UNIVERSITY OF CHICAGO Physics Department

Computer Science Department

Brandon Anderson

Risi Kondor

David Miller

Jan Offermann Marwah Roussi

DATASET ENERGY DISTRIBUTIONS

HIERARCHICAL NETWORKS

CG LAYER

28

CG LAYER

CLARIANT

