How to GAN LHC Events

Ramon Winterhalder

ITP Heidelberg

based on arXiv:1907.03764 with Anja Butter and Tilman Plehn

Monte Carlo simulations crucial for any LHC analysis

Monte Carlo simulations crucial for any LHC analysis

Problem: high-dimensionality and sharp phase-space structures

 $\rightarrow\,$ computationally time consuming

Monte Carlo simulations crucial for any LHC analysis

Problem: high-dimensionality and sharp phase-space structures

 $\rightarrow\,$ computationally time consuming

How to generate events more efficiently? \rightarrow GAN!

Monte Carlo simulations crucial for any LHC analysis

Problem: high-dimensionality and sharp phase-space structures

 $\rightarrow\,$ computationally time consuming

How to generate events more efficiently? \rightarrow GAN!

GANs already used in many physics applications.

Monte Carlo simulations crucial for any LHC analysis

Problem: high-dimensionality and sharp phase-space structures

 $\rightarrow\,$ computationally time consuming

How to generate events more efficiently? \rightarrow GAN!

GANs already used in many physics applications.

- Jet Images de Oliveira et al. [1701.05927], Carazza et al. [1909.01359],
- Calorimeters Paganini et al. [CaloGAN, 1705.02355, 1712.10321], Musella et al. [arXiv:1805.00850], Erdmann et al. [arXiv:1807.01954], ATLAS [ATL-SOFT-PUB-2018-001, ATL-SOFT-PROC-2019-007]
- Event generation Otten et al. [1901.00875], Hashemi et al. [1901.05282], Di Sipio et al. [1903.02433], Martinez et al. [1912.02748]
- Unfolding Datta et al. [1806.00433], Bellagente et al. [1912.0047]
- EFT models Erbin et al. [1809.02612]
- Mass templates Lin et al. [1903.02556]
- Event subtraction Butter et al. [1912.08824]

GAN Approach

Task: generate events with a neural network (generator)

Require: direct comparison to data \rightarrow unweighted events

Problem: in standard MC: unweighting algorithm needed \rightarrow inefficient

GAN Approach

Task: generate events with a neural network (generator)

Require: direct comparison to data \rightarrow unweighted events

Problem: in standard MC: unweighting algorithm needed \rightarrow inefficient

Solution: GAN

- Input: random numbers
- Output: unweighted events
- Training data:
 - unweighted MC events or real data
 - can include parton showers, hadronization and detector effects

GAN events for the $2 \rightarrow 6~$ particle production process

 $pp \rightarrow t\bar{t} \rightarrow (bW^{-}) \ (\bar{b}W^{+}) \rightarrow (bq_1\bar{q}_1') \ (\bar{b}q_2\bar{q}_2') \ .$

GAN events for the $2 \rightarrow 6~$ particle production process

 $pp \to t\bar{t} \to (bW^-) \ (\bar{b}W^+) \to (bq_1\bar{q}_1') \ (\bar{b}q_2\bar{q}_2') \ .$

Challenges: 16-dimensional phase-space, 4 resonances, phase-space boundaries, tails

GAN events for the $2 \rightarrow 6~$ particle production process

 $pp \to t\bar{t} \to (bW^-) \ (\bar{b}W^+) \to (bq_1\bar{q}_1') \ (\bar{b}q_2\bar{q}_2') \ .$

Challenges: 16-dimensional phase-space, 4 resonances, phase-space boundaries, tails

GAN Workflow

Energy Distributions

Energy Distributions

 \rightarrow flat distributions easy to learn!

Introduction 00 Top-Pair Production

Outlook

2-dimensional Correlations

2-dimensional Correlations

Introduction 00 Top-Pair Production

Outlook O

Invariant Mass Peaks

What about the resonances?

Without the additional loss:

Without the additional loss:

Challenge: resolve the mass peaks

Without the additional loss:

Challenge: resolve the mass peaks

Standard solution: phase-space remapping

$$\int \mathrm{d}s \frac{F(s)}{(s-m^2)^2+m^2\Gamma^2} = \frac{1}{m\Gamma} \int \mathrm{d}z \; F(s) \quad \text{with} \quad z = \arctan \frac{s-m^2}{m\Gamma}$$

Without the additional loss:

Challenge: resolve the mass peaks

Standard solution: phase-space remapping

$$\int \mathrm{d}s \frac{F(s)}{(s-m^2)^2 + m^2 \Gamma^2} = \frac{1}{m\Gamma} \int \mathrm{d}z \; F(s) \quad \text{with} \quad z = \arctan \frac{s-m^2}{m\Gamma}$$

However: knowledge of m and Γ needed

Introduction 00 Top-Pair Production

Outlook

Invariant Mass Peaks

Can we do it better?

Including the MMD Loss

Top-Pair Production 00000●

Invariant Mass Peaks

Including the MMD Loss

 $\mathsf{MMD}^2(P_T, P_G) = \left\langle k(x, x') \right\rangle_{x, x' \sim P_T} + \left\langle k(y, y') \right\rangle_{y, y' \sim P_G} - 2 \left\langle k(x, y) \right\rangle_{x \sim P_T, y \sim P_G}$

- free kernel choice \rightarrow stable results
- no knowledge of m and Γ needed

Summary

- The GAN is able to reproduce the full phase space structure of a realistic LHC process
- Flat distributions can be reproduced at arbitrary precison, limited only by statistics
- Using the MMD loss, we can even describe rich peaking resonances
- The same setup will allow us to GAN events from an actual LHC event sample

Appendix

Network Parameters

Parameter	Value
Input dimension G Lavers	18 + 6 10
Units per layer	512
Trainable weights G	2382866
Trainable weights D	2377217
λ_D	10^{-3}
λ_G	1
Batch size	1024
Epochs	1000
Iterations per epoch	1000
Training time	26h
Size of trainings data	10^{6}

000

Ramon Winterhalder

10 / 10