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• Reduce impact of other variables on analysis result

• Either remove correlation of classifier output with a systematic 
uncertainty or another variable

Motivation
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• Brief review of decorrelation Tools

• Recasting ATLAS

• Enter Distance Correlation (DisCo)

• Results

Overview
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Simple approaches
• Obscurity:

• Do not give mass [will be using this as stand-in for any variable we want to 
decorrelate agains] as input

• Simple, does not work  

• Data planing 
(old idea, studied and named in 1709.10106, 1908.08959):

• Reweight input distributions to be flat  
 
 
 

• Can be powerful, but no guarantee - depending on type of correlation  
Good baseline method
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Simple approaches contd.
• Designing Decorrelated Taggers - DDT (1603.00027):

• Linearly transform output to be stable for one working point by 
subtracting for each bin 

• Non-linear subtraction using regression 
 

• Modified weighting for uniformity in BDT - uBoost (1305.7248)

• Convolved substructure - CSS (1710.06859)  
Convolve with variable with shape function  
(not studied here)
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Complex Solutions
1611.01046

Learning to Pivot

1703.03507be optimized like any other.
The classifier network in this experiment consisted

of eleven input features, three fully-connected hid-
den layers each with 300 nodes having hyperbolic
tangent activation functions, and a single logistic
output node with the binomial cross-entropy clas-
sification objective. The adversarial network con-
sisted of a single input, 50 nodes with hyperbolic
tangent activation functions, and a softmax output
layer with 10 classes corresponding to binned val-
ues of the jet invariant mass (each bin representing
one decile of the background), and the multi-class
cross-entropy classification objective.

Because the adversary is challenged with adapt-
ing to an ever-changing input as the classifier is
trained, and also because its task is relatively easy,
two strategies were used to train the adversary faster
than the classifier. First, the adversary was given
a head start at the beginning of training with 100
updates while the classifier was fixed. Second, the
adversary was trained with a larger learning rate of
1.0 compared to 10�3 for the tagger objective.

The data set used for experiments was divided into
training (80%), validation (10%, used for hyperpa-
rameter tuning), and testing (10%) subsets. Each
classifier input feature was log-scaled if the empirical
skew estimate was greater than 1.0, then standard-
ized to zero mean and unit variance. Model param-
eters were initialized from a scaled normal distribu-
tion [27].

Training was performed using stochastic gradient
descent, applied to mini-batches of 100 examples
from each class. During training, the event weights
were scaled so that the average weight for each class
was 1.0. However, in the adversarial loss function
Ladversary, the signal events were given zero weight,
rendering them invisible to the adversary.

Updates were made using a training momentum
term of 0.5; the learning rate decayed by a factor of
10�5 after each update. Training was stopped after
100 epochs, where an epoch was defined as a single
pass through the background samples (⇡ 400k train-
ing events). Models were implemented inKeras [28]
and Theano [29], and hyperparameters were opti-
mized on a cluster of Nvidia Titan Black processors.

IV. PERFORMANCE

We compare the discrimination power of five can-
didate classifiers: the NN trained without an ad-
versary, the adversarially-trained NN, the unmodi-
fied ⌧21, and the two DDT-modified variables ⌧ 021,
and ⌧ 0021. The performance can be characterized by

... ...X
fc(X)

fa(fc(X))

Lclassification Ladversary

Classifier Adversary

FIG. 3. Architecture of the neural networks in the ad-
versarial training strategy. The classifying network dis-
tinguishes signal from background using the eleven vari-
ables (X) described in the text. The adversarial network
attempts to predict the invariant mass using only the
output of the classifier, fc(X); note that the adversary
has multiple binary classification outputs, correspond-
ing to bins in jet invariant mass, rather than a single
regression output.

measuring the signal e�ciency and background re-
jection of various thresholds on these discriminators
(Fig. 4).

The variable ⌧ 021, which is modified to reduce cor-
relation with the mass, results in a modest decrease
in its classification power relative to the unmodified
⌧21 at mZ0 = 100 GeV, though note that these ef-
fects are mass-dependent for both ⌧ 021 and ⌧ 0021. Sim-
ilarly, the adversarial network does not match the
discrimination power of the traditional classification
network, due to the additional constraint imposed in
its optimization. However, both NNs are clearly able
to take advantage of the combined power of the sub-
structure variables, and o↵er a large improvement
in background rejection for similar signal e�ciencies
compared to classification based on ⌧21 alone.

The focus of this study, however, is to look be-
yond the pure discriminatory power of these tools
and study their e↵ect on the jet mass spectrum. In
Fig. 5, it can be seen that the adversarial network
output for background events has a profile which
is largely independent of jet mass, while the clas-
sifying network is strongly dependent on jet mass.
Similarly, ⌧ 021 and ⌧ 0021 have a lessened dependence
on jet mass, compared to ⌧21. Figure 6 shows the
e↵ect on the jet mass distribution of successively
stricter requirements on these variables. Note that
the adversarial network’s dependence on jet mass is
diminished, but not eliminated, as can be seen in
the contour plot of Fig. 5. This is a reflection of the
trade-o↵ inherent in balancing classification power
with jet mass dependence.

In Fig. 5, we also show the profile of the neural net-
work output versus jet mass, for various thresholds
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Decorrelated Tagging

Learn a probability 
distribution via 
Gaussian mixture 
model

Learn to predict the 
mass and minimise 
categorical cross 
entropy

Basic idea: If adversary can infer mass from classifier output,  
the output is not decorrelated 



ATLAS implementation
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Figure 4: Adversarial neural network architecture. The classifier network is tasked with predicting jet labels (y)
based on jet substructure variable inputs (x), outputting a tagger variable (z). The adversary network is tasked
with inferring the value(s) of the variables from which the classifier is to be decorrelated (d; here the jet mass m),
optionally aided by auxiliary features (a; here log pT), by parametrising a posterior p.d.f. as a Gaussian mixture
model (GMM). The adversarial training is implemented using a gradient reversal layer, the trade-o� between Lclf
and Ladv controlled by the parameter �.

versa. In this way, using adaptive training weights, uBoost balances classification power and a uniform
selection e�ciency in the mass observable during training.

The BDT classifiers use the substructure variables listed in Table 1, the same used for the neural network
classifiers, as input features. The hyperparameter configuration adopted for AdaBoost is the same as the
one used for the BDT classifier in Ref. [7]. For the remaining uBoost hyperparameters, the default values in
Ref. [54] are used. Similar to the adversarial neural network classifier, the degree of mass-decorrelation for
uBoost is controlled by a hyperparameter ↵, called the uniforming rate. For ↵! 0, the adaptive boosting
only takes classification loss into account, and the standard AdaBoost classifier is retrieved. Conversely,
for larger ↵, the uniform e�ciency boosting becomes gradually more important. For comparison with
other taggers, a value of ↵ = 0.3 is chosen, since it leads to roughly the same level of background rejection
as the ANN for the chosen default value of � and for the chosen BDT configuration.

The AdaBoost and uBoost classification objectives during training are shown in Figure 5.

The AdaBoost classification loss is seen to decrease monotonically and reach a plateau for the testing
dataset after 500 epochs of training. In contrast, the classification objective for uBoost initially decreases
due to improved discriminating power, and then rebounds as the adaptive boosting for uniform e�ciency
takes e�ect. Using a fixed duration of 500 epochs for all BDT-based models yields a collection of
consistently trained jet classifiers with varying degrees of mass-decorrelation. For these, the level of
mass-decorrelation is given by the degree of divergence at the end of the fixed training duration, which in
turn is controlled by rate at which the uniformity boosting takes e�ect, as controlled by ↵.

7 Results

The various mass-decorrelated jet taggers all result in a single discriminant variable which classifies jets
as either W jets or non-resonant multijets while keeping the shape of the background jet mass distribution
unchanged. As a representative example, the distributions of the NN and ANN tagger discriminants are
shown in Figure 6. The NN tagger powerfully separates the two classes of jets. The same is true for ANN
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• Similar to learning to pivot, uses gradient reversal

• Classifier: fully connected NN 
with high-level jet variables
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ATL-PHYS-PUB-2018-014  



Performance metrics
• Following ATLAS we look at performance for  

50% signs efficiency

• R50: background rejection 
 (1 / background efficiency)

• Higher = better rejection

• JSD50 is Jensen-Shannon Divergence 
between:  
background(all) and background(pass cut)

• 1/JSD50

• Higher = better decorrelation

• Expect trade off between these two measures
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Recasting ATLAS
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the physics task at hand than full mass-decorrelation.

7.3 Combined metric

A combined metric, reflecting both classification performance and mass-decorrelation, is necessary to
assess the trade-o�s balanced by each of the mass-decorrelation procedures. A more complete picture of
the performance is found by plotting the two metrics together. Figure 11 shows the mass-decorrelation
(1/JSD) versus the background rejection (1/"rel

bkg) for tagger cuts at "rel
sig = 50%, in two pT bins. The x-axis

measures classification power and the y-axis measures mass-decorrelation, with larger values along each
indicating better performance. For any given task, a specific direction in the plane of Figure 11 will
correspond to the best trade-o�.

For each of the mass-decorrelated MVA taggers, several working points are evaluated, by scanning � for
the ANN tagger and ↵ for uBoost. For high values of � (& 10), the ANN method starts to saturate given
the chosen network configurations, training procedures, and datasets.
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Figure 11: Unified plot of the metrics for classification (background rejection, 1/"rel
bkg) and mass-decorrelation

(inverse Jensen-Shannon divergence‚ 1/JSD), for cuts corresponding to "rel
sig = 50%, in two pT bins. Greater

values along each axis indicate better performance. Standard classifiers are indicated with filled markers. Mass-
decorrelated classifiers are indicated with open markers, with parameter scans traced out by dashed lines. The
shaded grey band indicates the statistical limit on 1/JSD from the finite number of simulated jets.

The dashed line and shaded band at high 1/JSD indicate the statistical limit of the mass-decorrelation,
estimated using bootstrap sampling.

Figure 11 shows that for equal levels of mass-decorrelation, the (A)NN tagger generally provides the
greatest background rejection. The BDT-based MVA taggers have comparable performance to the NN-
based taggers for the standard variants, but the adversarial training mass-decorrelation method is seen to
perform better than the uBoost method for the chosen configurations. From Figure 11(b), the e�ect of

19

ATL-PHYS-PUB-2018-014 

• Hadronic W tagging 
  (vs light quark/gluon QCD jets)

• Anti-kT, R=1.0 jets  
with pT in [200, 2000] GeV and  
mass in [50,300] GeV

• Studied analytical and machine 
learning approaches

• Best performance-correlation 
trade-off: Adversarial NN



Recasting ATLAS
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the physics task at hand than full mass-decorrelation.

7.3 Combined metric

A combined metric, reflecting both classification performance and mass-decorrelation, is necessary to
assess the trade-o�s balanced by each of the mass-decorrelation procedures. A more complete picture of
the performance is found by plotting the two metrics together. Figure 11 shows the mass-decorrelation
(1/JSD) versus the background rejection (1/"rel

bkg) for tagger cuts at "rel
sig = 50%, in two pT bins. The x-axis

measures classification power and the y-axis measures mass-decorrelation, with larger values along each
indicating better performance. For any given task, a specific direction in the plane of Figure 11 will
correspond to the best trade-o�.

For each of the mass-decorrelated MVA taggers, several working points are evaluated, by scanning � for
the ANN tagger and ↵ for uBoost. For high values of � (& 10), the ANN method starts to saturate given
the chosen network configurations, training procedures, and datasets.
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Figure 11: Unified plot of the metrics for classification (background rejection, 1/"rel
bkg) and mass-decorrelation

(inverse Jensen-Shannon divergence‚ 1/JSD), for cuts corresponding to "rel
sig = 50%, in two pT bins. Greater

values along each axis indicate better performance. Standard classifiers are indicated with filled markers. Mass-
decorrelated classifiers are indicated with open markers, with parameter scans traced out by dashed lines. The
shaded grey band indicates the statistical limit on 1/JSD from the finite number of simulated jets.

The dashed line and shaded band at high 1/JSD indicate the statistical limit of the mass-decorrelation,
estimated using bootstrap sampling.

Figure 11 shows that for equal levels of mass-decorrelation, the (A)NN tagger generally provides the
greatest background rejection. The BDT-based MVA taggers have comparable performance to the NN-
based taggers for the standard variants, but the adversarial training mass-decorrelation method is seen to
perform better than the uBoost method for the chosen configurations. From Figure 11(b), the e�ect of
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ATL-PHYS-PUB-2018-014 Our version

• Pythia + Delphes

• Limit to pT in [300, 400] GeV
Key features qualitatively and  

quantitatively well reproduced!



Adversarial Problems
• Adversarial training is inherently unstable (hard to set up 

and sensitive to hyper parameter changes)

• Looking for a saddle point 
 

• Many hyper parameters 
(second network + fine tuning of learning rates)

• Find a regulariser term that fulfils the same  
goal but allows simple training to convergence  
 

11



Distance Correlation

12

xjk = |Xj �Xk|
yjk = |Yj � Yk|

x̂jk = xjk � xj· � x·k + x··

ŷjk = yjk � yj· � y·k + y··

dCov2 =
1

n

X

j

X

k

x̂jkŷjk

Distances of all examples in batch  
for classifier output

... for variable to decorrelate

Center distributions

And calculate average 
product per batch

Some nice properties:
• Zero iff X, Y are independent; positive otherwise!
• Computationally tractable!
• Doesn’t require binning!

0803.4101, 1010.0297
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Results
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DisCo achieves state-of-the-art 
performance  
(with much simpler training)



Results
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Can also decorrelate more 
powerful CNN on jet images 

Overlay of 100k examples



Mass shapes
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What’s next?
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• Can we find an optimal pair of 
variables for ABCD background 
estimation?

• Goal:

• Two variables (f,g) with maximal  
signal/background discrimination 
and no correlation

Kasieczka (2009)
f

g

Work in progress with Ben Nachmann, 
Matt Schwartz & David Shih



Double Disco
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Work in progress with Ben Nachmann, 
Matt Schwartz & David Shih

Usual Cross Entropy DisCo(f,g)

x2 Improvement over mass 



Conclusions

• Decorrelation of classifiers important for many applications

• Simple regulariser term based on distance correlation (DisCo) 
achieves state of the art performance for W tagging

• Also decorrelates stronger CNN tagger

• Paper out 2001.05310  
Code here:  https://github.com/gkasieczka/DisCo

• DisCo’s not dead: more DisCo to come
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Thank you!

https://arxiv.org/abs/2001.05310
https://github.com/gkasieczka/DisCo


Bonus Material
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Top Tagging
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Top images based on  
top tagging reference 
dataset


