

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

Motivation

- Reduce impact of other variables on analysis result
- Either remove correlation of classifier output with a systematic uncertainty or another variable

Overview

- Brief review of decorrelation Tools
- Recasting ATLAS
- Enter Distance Correlation (DisCo)
- Results

Simple approaches

- Obscurity:
 - Do not give mass [will be using this as stand-in for any variable we want to decorrelate agains] as input
 - Simple, does not work
- Data planing (old idea, studied and named in 1709.10106, 1908.08959):
 - Reweight input distributions to be flat

$$w_{i,C}|_{x_i \text{ in bin } j} = A_C \frac{1}{n_j}$$

 Can be powerful, but no guarantee - depending on type of correlation Good baseline method

Simple approaches contd.

- Designing Decorrelated Taggers DDT (1603.00027):
 - Linearly transform output to be stable for one working point by subtracting for each bin

$$y' = y - M \cdot (x - O)$$

Non-linear subtraction using regression

$$y^{\text{k-NN}} = y - y^{(P\%)}(x, x')$$

- Modified weighting for uniformity in BDT uBoost (1305.7248)
- Convolved substructure CSS (1710.06859)
 Convolve with variable with shape function (not studied here)

$$\frac{1}{\sigma}\frac{d\sigma}{dx} \mapsto \frac{1}{\sigma}\frac{d\sigma}{dx_{\text{CSS}}} = \frac{1}{\sigma}\frac{d\sigma}{dx} \otimes F_{\text{CSS}}(x|\alpha,\Omega_D),$$

$$F_{\text{CSS}}(x|\alpha,\Omega_D) = \left(\frac{\alpha}{\Omega_D}\right)^{\alpha} \frac{1}{\Gamma(\alpha)} x^{\alpha-1} e^{-\frac{\alpha x}{\Omega_D}}$$

Complex Solutions

Learning to Pivot

1611.01046
Learn a probability
distribution via
Gaussian mixture
model

Decorrelated Tagging

1703.03507
Learn to predict the mass and minimise categorical cross entropy

Basic idea: If adversary can infer mass from classifier output, the output is not decorrelated

ATLAS implementation

ATL-PHYS-PUB-2018-014

- Similar to learning to pivot, uses gradient reversal
- Classifier: fully connected NN with high-level jet variables

Variable	Type	Reference
C_2, D_2	Energy correlation ratios	[38]
$ au_{21}$	<i>N</i> -subjettiness	[41]
$R_2^{ m FW}$	Fox-Wolfram moment	[42]
$ ilde{\mathcal{P}}$	Planar flow	[43]
a_3	Angularity	[44]
A	Aplanarity	[45]
$Z_{\rm cut}$, $\sqrt{d_{12}}$	Splitting scales	[46, 47]
KtDR	k_t -subjet ΔR	[48]

1

Performance metrics

- Following ATLAS we look at performance for 50% signs efficiency
 - R50: background rejection
 (I / background efficiency)
 - Higher = better rejection
 - JSD50 is Jensen-Shannon Divergence between: background(all) and background(pass cut)
 - 1/JSD50
 - Higher = better decorrelation
- Expect trade off between these two measures

Recasting ATLAS

- Hadronic W tagging (vs light quark/gluon QCD jets)
- Anti- k_T , R=1.0 jets with p_T in [200, 2000] GeV and mass in [50,300] GeV
- Studied analytical and machine learning approaches
- Best performance-correlation trade-off: Adversarial NN

ATL-PHYS-PUB-2018-014

Recasting ATLAS

ATL-PHYS-PUB-2018-014

Our version

- Pythia + Delphes
- Limit to p_T in [300, 400] GeV

Key features qualitatively and quantitatively well reproduced!

Adversarial Problems

- Adversarial training is inherently unstable (hard to set up and sensitive to hyper parameter changes)
 - Looking for a saddle point

$$\min_{\theta_{\rm clf}} \max_{\theta_{\rm adv}} L_{\rm clf}(y(\theta_{\rm clf})) - \lambda L_{\rm adv}(y(\theta_{\rm clf}), m; \theta_{\rm adv})$$

- Many hyper parameters (second network + fine tuning of learning rates)
- Find a regulariser term that fulfils the same goal but allows simple training to convergence

$$\min_{\theta_{\text{clf}}} L_{\text{clf}}(y(\theta_{\text{clf}})) + \lambda C_{\text{reg}}(y(\theta_{\text{clf}}), m)$$

Distance Correlation

$$x_{jk} = |X_j - X_k|$$
 Distances of all examples in batch for classifier output $y_{jk} = |Y_j - Y_k|$... for variable to decorrelate

$$\hat{x}_{jk} = x_{jk} - \overline{x}_{j.} - \overline{x}_{.k} + \overline{x}_{..}$$

$$\hat{y}_{jk} = y_{jk} - \overline{y}_{j.} - \overline{y}_{.k} + \overline{y}_{..}$$

Center distributions

$$\mathrm{dCov}^2 = \frac{1}{n} \sum_j \sum_k \hat{x}_{jk} \hat{y}_{jk} \quad \text{And calculate average product per batch}$$

Some nice properties:

- Zero iff X,Y are independent; positive otherwise!
- Computationally tractable!
- Doesn't require binning!

Results

$$L = L_{classifier}(\vec{y}, \vec{y}_{true}) + \lambda \, dCorr^{2}(\vec{m}, \vec{y})$$

DisCo achieves state-of-the-art performance (with much simpler training)

Results

Overlay of 100k examples

Can also decorrelate more powerful CNN on jet images

Mass shapes

What's next?

- Can we find an optimal pair of variables for ABCD background estimation?
- Goal:
 - Two variables (f,g) with maximal signal/background discrimination and no correlation

Kasieczka (2009)

Double Disco

Loss = (Loss for f) + (Loss for g) + λ (Loss term to make f and g independent)

Usual Cross Entropy

Work in progress with Ben Nachmann, Matt Schwartz & David Shih

x2 Improvement over mass

Conclusions

- Decorrelation of classifiers important for many applications
- Simple regulariser term based on distance correlation (DisCo) achieves state of the art performance for W tagging
 - Also decorrelates stronger CNN tagger
- Paper out <u>2001.05310</u>
 Code here: https://github.com/gkasieczka/DisCo
- DisCo's not dead: more DisCo to come

Thank you!

Bonus Material

Top Tagging

Top images based on top tagging reference dataset