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Then (2007)

Excitement about Discovery Potential @ LHC



History of the LHC Olympics

Prior to the LHC turn-on:

• Four dedicated workshops: July 2005 (CERN), February 2006 (CERN), August 2006 
(KITP), March 2007 (Princeton).

• A number of black boxes consisting of reconstructed objects (electrons, photons, jets, 
MET, etc) were prepared using Madgraph, Pythia & PGS

• Anticipation was high that the LHC would discover new physics supersymmetry right 
away, so the focus was on characterizing the new physics supersymmetric model  

• So almost all the black boxes were signal only and heavily based on supersymmetry

• And the primary goal was signal characterization (measuring masses, spins, branching 
ratios)
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LHC Olympics 2020
Organizers: Gregor Kasieczka, Ben Nachman & David Shih

The LHC has been operating for ~10 years

• Despite countless model-specific searches for new physics at the LHC, no evidence for 
new physics yet.  

• What if we’re not looking in the right places?

• We need a new data challenge!

• New motivation:  To spur the development of innovative, model-independent search 
methods, especially using deep learning

• And now the primary goal of the challenge is anomaly detection: to find the signal in 
the data if it is there (and then characterize it)
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Excitement about Discovery Potential @ LHC

into the future

credit to Google Deep Dream and M. Perelstein



LHC Olympics 2020: Black Boxes
Organizers: Gregor Kasieczka, Ben Nachman & David Shih

Three black boxes of simulated data were prepared:

• 1 million events each

• 4-vectors of every reconstructed particle (hadron) in the event

• Particle ID, charge, etc not included

• Single R=1 jet trigger pT>1.2 TeV

• Black boxes are meant to be representative of actual data, meaning they are mostly 
background and may contain signals of new physics

In addition, a sample of 1M QCD dijet events (produced with Pythia8 and 
Delphes3.4.1) was provided as a background sample.

https://doi.org/10.5281/zenodo.3547721



LHC Olympics 2020: R&D Dataset
Organizers: Gregor Kasieczka, Ben Nachman & David Shih

Prior to the challenge, we also released a labeled R&D dataset consisting 
of 1M QCD dijet events and 100k signal events

https://doi.org/10.5281/zenodo.2629072
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No explicit search at the 
LHC for this scenario!



LHC Olympics 2020: Submission format
Organizers: Gregor Kasieczka, Ben Nachman & David Shih

https://docs.google.com/forms/d/e/1FAIpQLScw323fa9qpLbdMvGtr2YeqcGTjE5Zm18-umIDiPldi_cWxVA/viewform



Elements of a successful search strategy (?)

What we thought it would take to do well in the challenge:

1. A model-agnostic search strategy with broad sensitivity to new physics

2. Accurate method of background estimation

(It is not enough to have a discriminant that is sensitive to new physics. 
One must also be able to predict the background in the signal region!)
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Elements of a successful search strategy (?)

What we thought it would take to do well in the challenge:

1. A model-agnostic search strategy with broad sensitivity to new physics

2. Accurate method of background estimation

(It is not enough to have a discriminant that is sensitive to new physics. 
One must also be able to predict the background in the signal region!)

But first, let’s have a look at the landscape of model-
independent search strategies…

We’ll see to what extent this was true!



Overview of search strategies

Search strategies vary in their degrees of signal and background 
model dependence

from Nachman & DS 2001.04990
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Existing Model Independent Searches

A brief history of model independent searches in HEP:

• D0

• H1 (Hera)

• CDF

• CMS

• ATLAS

“General Search”

“MUSIC”

“Sleuth”

“Sleuth/Vista”

PRD 62:092004 (2000)
PRD 64:012004 (2001)
PRL 86:3712 (2001)

PLB 602:14-30 (2004)
0705.3721

0712.1311 PRD 78:012002 (2008)
0712.2534 (submitted to PRL, NEVER PUBLISHED)
0809.3781 PRD 79:011101 (2009)

1807.07447 EPJC 79:120 (2019)“Model independent 
general search”

CMS-PAS-EXO-14-016



The general idea behind all of these: data vs MC comparison

From CDF 0712.2534:

Existing searches compare many 1D histograms. 

Optimal version would use DNN on full phase space to distinguish data 
from background MC (D’Agnolo, Wulzer et al 1806.02350, 1912.12155)
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TABLE I: A subset of the Vista comparison between Teva-
tron Run II data and the standard model prediction, showing
the final states with greatest discrepancies in population. Fi-
nal states are labeled in this table according to the number
and types of objects present, and are ordered according to
decreasing discrepancy between the total number of events
expected and the total number observed in the data. Only
statistical uncertainties on the standard model prediction are
shown; systematics are incorporated by allowing their values
to float in the overall fit. A total of 344 populated exclusive
final states are considered.

Final State Data SM prediction Final State Data SM prediction

3jτ+ 71 114 ± 4 e+γ 636 551 ± 11

5j 1661 1903 ± 51 e+3j 28656 27282 ± 405

2jτ+ 233 297 ± 6 b5j 131 95 ± 5

2j2τ+ 6 27 ± 4.6 j2τ+ 50 86 ± 8

be+j 2207 2015 ± 29 jτ+τ− 74 125 ± 14

3j 35436 37295 ± 524 bp/ 10 30 ± 5

e+3jp/ 1954 1752 ± 42 e+jγ 286 369 ± 21

be+2j 798 695 ± 13 e+jp/τ− 29 14 ± 2

3jp/ 811 968 ± 38 2j 96502 92437 ± 1355

e+µ+ 26 12 ± 2 be+3j 356 299 ± 8

for quickly implementing and testing modifications to the
correction model, including a quick fit for values of as-
sociated correction factors. The specific details of the
correction model are intentionally kept as simple as pos-
sible in the interest of transparency in the event of a
possible new physics claim. The details of this correction
model are motivated by individual discrepancies noted
in a global comparison of CDF high-pT data to the stan-
dard model prediction. The correction model includes
specific correction factors for the integrated luminosity
of the sample, the ratio (k-factor) of the actual cross sec-
tion for a standard model process and the usually leading
order approximation given by event generators, object
identification efficiencies, object misidentification rates,
and trigger efficiencies. A total of 44 correction factors
are used, of which over twenty are constrained by exter-
nal information. A global χ2 is formed by comparison of
CDF data to the standard model prediction, and mini-
mized as a function of these correction factors. Correc-
tions to object identification efficiencies are typically less
than 10%; fake rates are consistent with an understand-
ing of the underlying physical mechanisms responsible;
k-factors range from slightly less than unity to greater
than two for some processes with multiple jets.

A global comparison of data to standard model pre-
diction is made in 16,486 kinematic distributions in 344
populated exclusive final states. In each final state, the
number of events observed is compared with the standard
model prediction, as shown in Table I, and the Poisson
probability that the number of predicted events would
fluctuate up to or above (or down to or below) the ob-
served number of events is calculated and converted into
units of standard deviation. In each kinematic distri-
bution, the shape of the data is compared to the shape
of the standard model prediction using the Kolmogorov-
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FIG. 1: Distribution of Vista discrepancy between data and
the standard model prediction, measured in units of standard
deviation (σ), shown as the solid (green) histogram. The top
pane shows the distribution of discrepancies between the total
number of events observed and predicted in the 344 populated
final states considered. The bottom pane shows the distri-
bution of discrepancies between the observed and predicted
shapes of 16,486 kinematic distributions. In the bottom pane,
distributions in which data and the standard model predic-
tion are in agreement (large KS probability) correspond to
negative σ, and distributions in which the data and the stan-
dard model prediction are in relative disagreement (small KS
probability) correspond to large positive σ. The expected dis-
tributions are shown as the solid (black) curves. Interest is
focused on the entries in the tails of the top distribution and
the high tail of the bottom distribution.

Smirnov (KS) statistic, which is converted to a probabil-
ity and then into units of standard deviation.

Vista highlights final states and kinematic distribu-
tions where the statistical significance of any discrepancy
corresponds to a probability < 0.001 after accounting for
the appropriate number of final states or distributions
considered [13]. The algorithm itself cannot determine
whether a particular discrepancy constitutes a discovery
of new physics. Physics judgement is required to deter-
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The particle physics standard model (SM) is remark-
ably successful, but is believed to require expansion be-
yond the electroweak scale. A variety of possible exten-
sions have been proposed. Many analyses optimized for
specific signatures have been performed to search for evi-
dence of these possibilities. Limits have been set on cross
sections for postulated processes and on masses of hypo-
thetical particles, but no conclusive indication of physics
beyond the standard model has yet been seen [1].
This Letter summarizes a broad search for new physics

at the electroweak scale without focusing on any spe-
cific proposed scenario. The detailed writeup is pro-
vided in Ref. [2]. Events containing one or more par-
ticles produced at large transverse momentum collected
by the CDF experiment in Run II of the Fermilab Teva-
tron are analyzed for discrepancies relative to the stan-
dard model prediction. A model-independent approach
(Vista) considers gross features of the data, and is sen-
sitive to new large cross section physics. A quasi-model-
independent approach (Sleuth) emphasizes events with
large summed scalar transverse momentum, and is partic-
ularly sensitive to new electroweak scale physics. These
global algorithms provide a complementary approach to
searches optimized for more specific new physics scenar-
ios. Searches in a similar spirit have previously been per-
formed by the D0 Collaboration [3–5] in Tevatron Run I
and by the H1 Collaboration [6] at HERA-I.
This search for new physics is designed with the in-

tention of maximizing the chance for discovery, rather
than excluding model parameter space if no discrepancy
is found. Discrepancies between data and a complete
standard model background estimate are identified in a
global sample of high transverse momentum (high-pT )
collision events. Three statistics are employed to iden-
tify and quantify disagreement: populations of exclusive
final states defined by the objects the events contain,
shapes of kinematic distributions, and excesses on the
tail of summed scalar transverse momentum distribu-
tions. These statistics identify discrepancies worthy of
further study.
A discovery claim can be made to the extent that a

highlighted discrepancy can be demonstrated to be not
due to a statistical fluctuation, a mismodeling of the de-
tector response, or an inadequate implementation of the
standard model prediction, and must therefore be due
to some new underlying physics. Any observed discrep-
ancy is subject to scrutiny, and explanations are sought
in terms of the above points.
TheVista and Sleuth algorithms provide a means for

making the above three arguments, with a high threshold
placed on the statistical significance of a discrepancy in
order to minimize the chance of a false discovery claim.
As described later, this threshold is the requirement that
the false discovery rate is less than 0.001, after taking into
account the total number of final states, distributions, or
regions being examined.

The traditional notions of signal and control regions
are modified. Removing prejudice as to where new
physics may appear, all regions of the data are treated
as both signal and control. This analysis is not blind,
but rather seeks to identify and understand discrepan-
cies between data and the standard model prediction.
With the goal of discovery, emphasis is placed on ex-
amining discrepancies, focusing on outliers rather than
global goodness of fit. Individual discrepancies that are
not statistically significant are generally not pursued.
Vista and Sleuth are employed simultaneously,

rather than sequentially. An effect highlighted by
Sleuth prompts additional investigation of the discrep-
ancy, usually resulting in a specific hypothesis explaining
the discrepancy in terms of a detector effect or adjust-
ment to the standard model prediction that is then fed
back and tested for global consistency using Vista.
Forming hypotheses for the cause of specific discrepan-

cies, implementing those hypotheses to assess their wider
consequences, and testing global agreement after the im-
plementation are emphasized as the crucial activities for
the investigator throughout the process of data analy-
sis [11]. This process is constrained by the requirement
that all adjustments be physically motivated.
This search for new physics terminates when one of

two conditions are satisfied: either a compelling case for
new physics is made, or there remain no statistically sig-
nificant discrepancies on which a new physics case can
be made. In the former case, to quantitatively assess
the significance of the potential discovery, a full treat-
ment of systematic uncertainties must be implemented.
In the latter case, it is sufficient to demonstrate that all
observed effects are not in significant disagreement with
an appropriate global standard model description.
This analysis uses data corresponding to an integrated

luminosity of 927 pb−1 of pp̄ collisions at
√
s = 1.96 TeV

recorded by the CDF II detector [7]. CDF II consists of a
charged particle tracking system composed of silicon strip
detectors and a gas drift chamber inside a 1.4 T mag-
netic field, surrounded by electromagnetic and hadronic
calorimeters and enclosed by muon detectors.
A standard set of object identification criteria is used

to identify isolated and energetic objects produced in
the hard collision, including electrons (e±), muons (µ±),
taus (τ±), photons (γ), jets (j), jets originating from a
bottom quark (b), and missing momentum ( /p). Monte
Carlo event generators are used to determine the stan-
dard model prediction. Vista partitions data and Monte
Carlo events into exclusive final states labeled according
to the objects (e±, µ±, τ±, γ, j, b, /p) identified in each
event. Each event belongs to one and only one exclusive
final state [12].
A correction model is developed to improve systematic

deficiencies in the standard model theoretical prediction
and the simulation of the detector response. Achieving
this on the entire high-pT dataset requires a framework

Existing Model Independent Searches

Signal model independent but background model dependent



Figure 6. A histogram of the classifier output for a neural network trained to distinguish ‘data’
(Pythia) and ‘simulation’ (Herwig) in the signal region.

Figure 7. The four features used for machine learning in the signal region, before and after applying
dctr: jet mass (top) and the N -subjettiness ratios ·21 (bottom) for the more massive jet (left) and
the less massive jet (right).

– 10 –

Figure 1: The schematic diagram of an autoencoder. The input is mapped into a low(er) dimensional
representation, in this case 6-dim, and then decoded.

threshold.

For concreteness, we will focus in this work on distinguishing “fat” QCD jets from

other types of heavier, boosted resonances decaying to jets. Building on previous work

on top tagging [12], we will concentrate on machine learning algorithms that take jet

images as inputs. For signal, we will consider all-hadronic top jets, as well as 400 GeV

gluinos decaying to 3 jets via RPV. Obviously, this is not meant to be an exhaustive

study of all possible backgrounds and signals and methods but is just meant to be a

proof of concept. The idea of autoencoders for anomaly detection is fully general and not

limited to these signals. We will comment on other forms of inputs in section 5. Moreover

there are many other anomaly detection techniques that are not based on autoencoder

and/or on reconstruction (loss) which are worth exploring in future work. At the same

time autoencoders have been recently used in other high energy physics applications:

in parton shower simulation [28], for feature selection of a supervised classification [30],

and for automated detection of detector aberrations in CMS [31].

We will explore various architectures for the autoencoder, from simple dense neural

networks to convolutional neural networks (CNNs), as well as a shallow linear represen-

tation in the form of Principal Component Analysis (PCA). We will see that while they

are all e↵ective at improving S/B by factors of ⇠ 10 or more, they have important dif-

ferences. The reconstruction errors of the dense and PCA autoencoders correlate more

highly with jet mass, leading to greater S/B improvement for the 400 GeV gluinos com-

pared to the CNN autoencoder. While this may seem better at first glance, we discuss

how one might want to use an autoencoder that is decorrelated with jet mass, in order

to obtain data-driven side-band estimates of the QCD background and perform a bump

hunt in jet mass. Indeed, we show how cutting on the reconstruction error of the CNN

autoencoder results in stable jet mass distributions, and we show how this can be used

to improve S/B by a factor of ⇠ 6 in a jet mass bump hunt for the 400 GeV gluino

2

CWoLa Hunting
19

Application to Bump Hunt

In signal region:
S = 522,
S/B = 0.64%
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Figure 1. (Upper plot) ROC curves for the LDA top jet tag-
gers compared to the DeepTop tagger [22, 23] (colored trian-
gles) for events with fat-jets satisfying pT 2 [350, 450] GeV.
The purple star represents the default JH top tagger [8] ref-
erence point. (Lower plot) ROC curves for the tt̄ LDA event
classifiers compared to the classifiers from the DeepTop (col-
ored triangles) and the JH top tagger (purple star). In both
plots the shaded bands represent the mean-average-deviation
extracted from the k-folding procedure. See text for details.

ous supervised taggers in the literature [8, 22, 23]. We
see that the taggers perform well and with relatively
small variance, with the supervised tagger performing
the best. An interesting observation is that at high
background rejection rates (1/✏b � O(few)) the taggers
trained on smaller S/B perform slightly better than the
tagger trained on the S/B = 1 sample, although the dif-
ferences are comparable to the estimated uncertainties.
This is essentially because the algorithm is designed to
discern features in the jet substructure, which are sub-
sequnetly used to tag jets and events. In the supervised
and S/B = 1 case the algorithm discovers features in
top jets both near mj0 ⇠ mt and mj0 ⇠ mW (see the
right plot in Fig. 2), while in the lower S/B cases the
algorithm is only able to identify mj0 ⇠ mt as relevant.
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Figure 2. 2D projected probability distributions (in the plane
of mj0 and mj1/mj0 ) of the two latent themes discovered
in mixed (S/B = 1) QCD and tt̄ event samples with fat-jets
satisfying pT 2 [350, 450] GeV.

On the other hand, lower mj0 regions generically feature
more prominently in QCD jets (see left plot in Fig. 2).
Thus, while a very accurate determination of the fea-
tures near mj0 ⇠ mW in the supervised case helps the
performance of the tagging algorithm, the worse resolu-
tion in the unsupervised S/B = 1 case leads to worse
tagging performance compared to lower S/B examples.
We see that the performance of the unsupervised taggers
is comparable to the original JH top tagger [8], although
it falls short in comparison to the others. We note that
the observables we use mostly match those used in the
JH top tagger, hence the similar performance is indeed
encouraging.

In Fig. 1 (lower panel) we plot the ROC curves for our
tt̄ event classifiers, where a single document now con-
tains all jets within the selected pT region in an event,
and again compare these to the top jet taggers in the
literature. To make the comparison with other taggers
fair, we re-scale those results by defining an event tag-
ging e�ciency (✏e) in terms of the jet tagging e�ciency
(✏j) and the fraction of events in our pure samples with
one (f1) and two (f2) jets passing the selection cuts3,
✏e = (2✏j � ✏2j )f2 + ✏jf1. This means in practice that
tagging an event as tt̄ requires at least one jet in the
event to be tagged as a top jet. The ROC curves do
not change significantly under this re-scaling, instead the
points move along a trajectory towards higher e�ciencies
approximately equal to that of the ROC curve for jet tag-
ging. We see again that the classifier performs very well
in all cases, performing as well as the JH top tagger even
for low S/B.

3 We have checked that the fractions of events with zero or more
than two jets passing the selection cuts are negligible.
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Figure 1. Schematic view of the proposed method to compute the p-value of the null hypothesis
that the two samples are drawn from the same probability density.

The test statistic defined in Eq. (2.5) is also equal to the estimated Kullback-Leibler

(KL) divergence D̂KL(p̂T ||p̂B) between the estimated PDFs of trial and benchmark samples,

with the expectation value replaced by the empirical average (see Appendix A and in

particular Eq. (A.2)). The KL divergence plays a central role in information theory and can

be interpreted as the relative entropy of a probability distribution with respect to another

one. Our choice is also motivated by the fact that the log function in Eq. (2.5) makes the

test statistic linearly sensitive to small di↵erences between the distributions. Of course,

other choices for the test statistic are possible, based on an estimated divergence between

distributions other than the KL divergence, e.g. the Pearson squared-error divergence. The

exploration of other possibilities is beyond the scope of this paper and is left for future

work.

Ultimately, we want to conclude whether or not the null hypothesis can be rejected,

with a specified significance level ↵ (e.g. ↵ = 0.05), therefore we need to associate a

p-value to the null hypothesis, to be compared with ↵. To this end, we first need to

estimate the PDFs p̂B,T from the samples, then compute the test statistics TSobs observed

on the two given samples. Next, in order to evaluate the probability associated with the

observed value TSobs of the test statistic, we need to reconstruct its probability distribution

f(TS|H0) under the null hypothesis H0, and finally compute a two-sided p-value of the null

hypothesis.

The distribution of the test statistic is expected to be symmetric around its mean (or

median), which in general may not be exactly zero as a finite-sample e↵ect. Therefore, the

two-sided p-value is simply double the one-sided p-value.

A schematic summary of the method proposed in this paper is shown in Figure 1. In

the remainder of this section we will describe this procedure in detail.

– 5 –

Autoencoders
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Probabilistic Modeling
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Neighbors

Figure 4. Scatter plot of R(x|m) versus log pbackground(x|m) across the test set in the SR. Background
events are shown (as a two-dimensional histogram) in grayscale and individual signal events are shown
in red.

Figure 5. Left: Histogram of R(x|m) evaluated on the test set; Right: the integrated number of
events that survive a threshold on R(x|m). The two distributions are scaled to represent the rates for
500,000 total background events and 500 total signal events, as introduced in Sec. 4.

to have the same number of events as each other and in total, the same as the SR. A single NN
with four hidden layers with 64 notes each is trained using Keras [120] and TensorFlow [121].
Dropout [122] of 10% is used for each intermediate layer. Intermediate layers use rectified
linear unit activation functions and the last layer uses a sigmoid. The classifier is optimized
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Figure 6. A histogram of the classifier output for a neural network trained to distinguish ‘data’
(Pythia) and ‘simulation’ (Herwig) in the signal region.

Figure 7. The four features used for machine learning in the signal region, before and after applying
dctr: jet mass (top) and the N -subjettiness ratios ·21 (bottom) for the more massive jet (left) and
the less massive jet (right).
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Figure 1: The schematic diagram of an autoencoder. The input is mapped into a low(er) dimensional
representation, in this case 6-dim, and then decoded.

threshold.

For concreteness, we will focus in this work on distinguishing “fat” QCD jets from

other types of heavier, boosted resonances decaying to jets. Building on previous work

on top tagging [12], we will concentrate on machine learning algorithms that take jet

images as inputs. For signal, we will consider all-hadronic top jets, as well as 400 GeV

gluinos decaying to 3 jets via RPV. Obviously, this is not meant to be an exhaustive

study of all possible backgrounds and signals and methods but is just meant to be a

proof of concept. The idea of autoencoders for anomaly detection is fully general and not

limited to these signals. We will comment on other forms of inputs in section 5. Moreover

there are many other anomaly detection techniques that are not based on autoencoder

and/or on reconstruction (loss) which are worth exploring in future work. At the same

time autoencoders have been recently used in other high energy physics applications:

in parton shower simulation [28], for feature selection of a supervised classification [30],

and for automated detection of detector aberrations in CMS [31].

We will explore various architectures for the autoencoder, from simple dense neural

networks to convolutional neural networks (CNNs), as well as a shallow linear represen-

tation in the form of Principal Component Analysis (PCA). We will see that while they

are all e↵ective at improving S/B by factors of ⇠ 10 or more, they have important dif-

ferences. The reconstruction errors of the dense and PCA autoencoders correlate more

highly with jet mass, leading to greater S/B improvement for the 400 GeV gluinos com-

pared to the CNN autoencoder. While this may seem better at first glance, we discuss

how one might want to use an autoencoder that is decorrelated with jet mass, in order

to obtain data-driven side-band estimates of the QCD background and perform a bump

hunt in jet mass. Indeed, we show how cutting on the reconstruction error of the CNN

autoencoder results in stable jet mass distributions, and we show how this can be used

to improve S/B by a factor of ⇠ 6 in a jet mass bump hunt for the 400 GeV gluino
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Figure 1. (Upper plot) ROC curves for the LDA top jet tag-
gers compared to the DeepTop tagger [22, 23] (colored trian-
gles) for events with fat-jets satisfying pT 2 [350, 450] GeV.
The purple star represents the default JH top tagger [8] ref-
erence point. (Lower plot) ROC curves for the tt̄ LDA event
classifiers compared to the classifiers from the DeepTop (col-
ored triangles) and the JH top tagger (purple star). In both
plots the shaded bands represent the mean-average-deviation
extracted from the k-folding procedure. See text for details.

ous supervised taggers in the literature [8, 22, 23]. We
see that the taggers perform well and with relatively
small variance, with the supervised tagger performing
the best. An interesting observation is that at high
background rejection rates (1/✏b � O(few)) the taggers
trained on smaller S/B perform slightly better than the
tagger trained on the S/B = 1 sample, although the dif-
ferences are comparable to the estimated uncertainties.
This is essentially because the algorithm is designed to
discern features in the jet substructure, which are sub-
sequnetly used to tag jets and events. In the supervised
and S/B = 1 case the algorithm discovers features in
top jets both near mj0 ⇠ mt and mj0 ⇠ mW (see the
right plot in Fig. 2), while in the lower S/B cases the
algorithm is only able to identify mj0 ⇠ mt as relevant.
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Figure 2. 2D projected probability distributions (in the plane
of mj0 and mj1/mj0 ) of the two latent themes discovered
in mixed (S/B = 1) QCD and tt̄ event samples with fat-jets
satisfying pT 2 [350, 450] GeV.

On the other hand, lower mj0 regions generically feature
more prominently in QCD jets (see left plot in Fig. 2).
Thus, while a very accurate determination of the fea-
tures near mj0 ⇠ mW in the supervised case helps the
performance of the tagging algorithm, the worse resolu-
tion in the unsupervised S/B = 1 case leads to worse
tagging performance compared to lower S/B examples.
We see that the performance of the unsupervised taggers
is comparable to the original JH top tagger [8], although
it falls short in comparison to the others. We note that
the observables we use mostly match those used in the
JH top tagger, hence the similar performance is indeed
encouraging.

In Fig. 1 (lower panel) we plot the ROC curves for our
tt̄ event classifiers, where a single document now con-
tains all jets within the selected pT region in an event,
and again compare these to the top jet taggers in the
literature. To make the comparison with other taggers
fair, we re-scale those results by defining an event tag-
ging e�ciency (✏e) in terms of the jet tagging e�ciency
(✏j) and the fraction of events in our pure samples with
one (f1) and two (f2) jets passing the selection cuts3,
✏e = (2✏j � ✏2j )f2 + ✏jf1. This means in practice that
tagging an event as tt̄ requires at least one jet in the
event to be tagged as a top jet. The ROC curves do
not change significantly under this re-scaling, instead the
points move along a trajectory towards higher e�ciencies
approximately equal to that of the ROC curve for jet tag-
ging. We see again that the classifier performs very well
in all cases, performing as well as the JH top tagger even
for low S/B.

3 We have checked that the fractions of events with zero or more
than two jets passing the selection cuts are negligible.
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Figure 1. Schematic view of the proposed method to compute the p-value of the null hypothesis
that the two samples are drawn from the same probability density.

The test statistic defined in Eq. (2.5) is also equal to the estimated Kullback-Leibler

(KL) divergence D̂KL(p̂T ||p̂B) between the estimated PDFs of trial and benchmark samples,

with the expectation value replaced by the empirical average (see Appendix A and in

particular Eq. (A.2)). The KL divergence plays a central role in information theory and can

be interpreted as the relative entropy of a probability distribution with respect to another

one. Our choice is also motivated by the fact that the log function in Eq. (2.5) makes the

test statistic linearly sensitive to small di↵erences between the distributions. Of course,

other choices for the test statistic are possible, based on an estimated divergence between

distributions other than the KL divergence, e.g. the Pearson squared-error divergence. The

exploration of other possibilities is beyond the scope of this paper and is left for future

work.

Ultimately, we want to conclude whether or not the null hypothesis can be rejected,

with a specified significance level ↵ (e.g. ↵ = 0.05), therefore we need to associate a

p-value to the null hypothesis, to be compared with ↵. To this end, we first need to

estimate the PDFs p̂B,T from the samples, then compute the test statistics TSobs observed

on the two given samples. Next, in order to evaluate the probability associated with the

observed value TSobs of the test statistic, we need to reconstruct its probability distribution

f(TS|H0) under the null hypothesis H0, and finally compute a two-sided p-value of the null

hypothesis.

The distribution of the test statistic is expected to be symmetric around its mean (or

median), which in general may not be exactly zero as a finite-sample e↵ect. Therefore, the

two-sided p-value is simply double the one-sided p-value.

A schematic summary of the method proposed in this paper is shown in Figure 1. In

the remainder of this section we will describe this procedure in detail.
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Figure 4. Scatter plot of R(x|m) versus log pbackground(x|m) across the test set in the SR. Background
events are shown (as a two-dimensional histogram) in grayscale and individual signal events are shown
in red.

Figure 5. Left: Histogram of R(x|m) evaluated on the test set; Right: the integrated number of
events that survive a threshold on R(x|m). The two distributions are scaled to represent the rates for
500,000 total background events and 500 total signal events, as introduced in Sec. 4.

to have the same number of events as each other and in total, the same as the SR. A single NN
with four hidden layers with 64 notes each is trained using Keras [120] and TensorFlow [121].
Dropout [122] of 10% is used for each intermediate layer. Intermediate layers use rectified
linear unit activation functions and the last layer uses a sigmoid. The classifier is optimized
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Figure 6. A histogram of the classifier output for a neural network trained to distinguish ‘data’
(Pythia) and ‘simulation’ (Herwig) in the signal region.

Figure 7. The four features used for machine learning in the signal region, before and after applying
dctr: jet mass (top) and the N -subjettiness ratios ·21 (bottom) for the more massive jet (left) and
the less massive jet (right).
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Figure 1: The schematic diagram of an autoencoder. The input is mapped into a low(er) dimensional
representation, in this case 6-dim, and then decoded.

threshold.

For concreteness, we will focus in this work on distinguishing “fat” QCD jets from

other types of heavier, boosted resonances decaying to jets. Building on previous work

on top tagging [12], we will concentrate on machine learning algorithms that take jet

images as inputs. For signal, we will consider all-hadronic top jets, as well as 400 GeV

gluinos decaying to 3 jets via RPV. Obviously, this is not meant to be an exhaustive

study of all possible backgrounds and signals and methods but is just meant to be a

proof of concept. The idea of autoencoders for anomaly detection is fully general and not

limited to these signals. We will comment on other forms of inputs in section 5. Moreover

there are many other anomaly detection techniques that are not based on autoencoder

and/or on reconstruction (loss) which are worth exploring in future work. At the same

time autoencoders have been recently used in other high energy physics applications:

in parton shower simulation [28], for feature selection of a supervised classification [30],

and for automated detection of detector aberrations in CMS [31].

We will explore various architectures for the autoencoder, from simple dense neural

networks to convolutional neural networks (CNNs), as well as a shallow linear represen-

tation in the form of Principal Component Analysis (PCA). We will see that while they

are all e↵ective at improving S/B by factors of ⇠ 10 or more, they have important dif-

ferences. The reconstruction errors of the dense and PCA autoencoders correlate more

highly with jet mass, leading to greater S/B improvement for the 400 GeV gluinos com-

pared to the CNN autoencoder. While this may seem better at first glance, we discuss

how one might want to use an autoencoder that is decorrelated with jet mass, in order

to obtain data-driven side-band estimates of the QCD background and perform a bump

hunt in jet mass. Indeed, we show how cutting on the reconstruction error of the CNN

autoencoder results in stable jet mass distributions, and we show how this can be used

to improve S/B by a factor of ⇠ 6 in a jet mass bump hunt for the 400 GeV gluino
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Figure 1. (Upper plot) ROC curves for the LDA top jet tag-
gers compared to the DeepTop tagger [22, 23] (colored trian-
gles) for events with fat-jets satisfying pT 2 [350, 450] GeV.
The purple star represents the default JH top tagger [8] ref-
erence point. (Lower plot) ROC curves for the tt̄ LDA event
classifiers compared to the classifiers from the DeepTop (col-
ored triangles) and the JH top tagger (purple star). In both
plots the shaded bands represent the mean-average-deviation
extracted from the k-folding procedure. See text for details.

ous supervised taggers in the literature [8, 22, 23]. We
see that the taggers perform well and with relatively
small variance, with the supervised tagger performing
the best. An interesting observation is that at high
background rejection rates (1/✏b � O(few)) the taggers
trained on smaller S/B perform slightly better than the
tagger trained on the S/B = 1 sample, although the dif-
ferences are comparable to the estimated uncertainties.
This is essentially because the algorithm is designed to
discern features in the jet substructure, which are sub-
sequnetly used to tag jets and events. In the supervised
and S/B = 1 case the algorithm discovers features in
top jets both near mj0 ⇠ mt and mj0 ⇠ mW (see the
right plot in Fig. 2), while in the lower S/B cases the
algorithm is only able to identify mj0 ⇠ mt as relevant.
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Figure 2. 2D projected probability distributions (in the plane
of mj0 and mj1/mj0 ) of the two latent themes discovered
in mixed (S/B = 1) QCD and tt̄ event samples with fat-jets
satisfying pT 2 [350, 450] GeV.

On the other hand, lower mj0 regions generically feature
more prominently in QCD jets (see left plot in Fig. 2).
Thus, while a very accurate determination of the fea-
tures near mj0 ⇠ mW in the supervised case helps the
performance of the tagging algorithm, the worse resolu-
tion in the unsupervised S/B = 1 case leads to worse
tagging performance compared to lower S/B examples.
We see that the performance of the unsupervised taggers
is comparable to the original JH top tagger [8], although
it falls short in comparison to the others. We note that
the observables we use mostly match those used in the
JH top tagger, hence the similar performance is indeed
encouraging.

In Fig. 1 (lower panel) we plot the ROC curves for our
tt̄ event classifiers, where a single document now con-
tains all jets within the selected pT region in an event,
and again compare these to the top jet taggers in the
literature. To make the comparison with other taggers
fair, we re-scale those results by defining an event tag-
ging e�ciency (✏e) in terms of the jet tagging e�ciency
(✏j) and the fraction of events in our pure samples with
one (f1) and two (f2) jets passing the selection cuts3,
✏e = (2✏j � ✏2j )f2 + ✏jf1. This means in practice that
tagging an event as tt̄ requires at least one jet in the
event to be tagged as a top jet. The ROC curves do
not change significantly under this re-scaling, instead the
points move along a trajectory towards higher e�ciencies
approximately equal to that of the ROC curve for jet tag-
ging. We see again that the classifier performs very well
in all cases, performing as well as the JH top tagger even
for low S/B.

3 We have checked that the fractions of events with zero or more
than two jets passing the selection cuts are negligible.
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Figure 1. Schematic view of the proposed method to compute the p-value of the null hypothesis
that the two samples are drawn from the same probability density.

The test statistic defined in Eq. (2.5) is also equal to the estimated Kullback-Leibler

(KL) divergence D̂KL(p̂T ||p̂B) between the estimated PDFs of trial and benchmark samples,

with the expectation value replaced by the empirical average (see Appendix A and in

particular Eq. (A.2)). The KL divergence plays a central role in information theory and can

be interpreted as the relative entropy of a probability distribution with respect to another

one. Our choice is also motivated by the fact that the log function in Eq. (2.5) makes the

test statistic linearly sensitive to small di↵erences between the distributions. Of course,

other choices for the test statistic are possible, based on an estimated divergence between

distributions other than the KL divergence, e.g. the Pearson squared-error divergence. The

exploration of other possibilities is beyond the scope of this paper and is left for future

work.

Ultimately, we want to conclude whether or not the null hypothesis can be rejected,

with a specified significance level ↵ (e.g. ↵ = 0.05), therefore we need to associate a

p-value to the null hypothesis, to be compared with ↵. To this end, we first need to

estimate the PDFs p̂B,T from the samples, then compute the test statistics TSobs observed

on the two given samples. Next, in order to evaluate the probability associated with the

observed value TSobs of the test statistic, we need to reconstruct its probability distribution

f(TS|H0) under the null hypothesis H0, and finally compute a two-sided p-value of the null

hypothesis.

The distribution of the test statistic is expected to be symmetric around its mean (or

median), which in general may not be exactly zero as a finite-sample e↵ect. Therefore, the

two-sided p-value is simply double the one-sided p-value.

A schematic summary of the method proposed in this paper is shown in Figure 1. In

the remainder of this section we will describe this procedure in detail.
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Figure 4. Scatter plot of R(x|m) versus log pbackground(x|m) across the test set in the SR. Background
events are shown (as a two-dimensional histogram) in grayscale and individual signal events are shown
in red.

Figure 5. Left: Histogram of R(x|m) evaluated on the test set; Right: the integrated number of
events that survive a threshold on R(x|m). The two distributions are scaled to represent the rates for
500,000 total background events and 500 total signal events, as introduced in Sec. 4.

to have the same number of events as each other and in total, the same as the SR. A single NN
with four hidden layers with 64 notes each is trained using Keras [120] and TensorFlow [121].
Dropout [122] of 10% is used for each intermediate layer. Intermediate layers use rectified
linear unit activation functions and the last layer uses a sigmoid. The classifier is optimized
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Figure 6. A histogram of the classifier output for a neural network trained to distinguish ‘data’
(Pythia) and ‘simulation’ (Herwig) in the signal region.

Figure 7. The four features used for machine learning in the signal region, before and after applying
dctr: jet mass (top) and the N -subjettiness ratios ·21 (bottom) for the more massive jet (left) and
the less massive jet (right).
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Figure 1: The schematic diagram of an autoencoder. The input is mapped into a low(er) dimensional
representation, in this case 6-dim, and then decoded.

threshold.

For concreteness, we will focus in this work on distinguishing “fat” QCD jets from

other types of heavier, boosted resonances decaying to jets. Building on previous work

on top tagging [12], we will concentrate on machine learning algorithms that take jet

images as inputs. For signal, we will consider all-hadronic top jets, as well as 400 GeV

gluinos decaying to 3 jets via RPV. Obviously, this is not meant to be an exhaustive

study of all possible backgrounds and signals and methods but is just meant to be a

proof of concept. The idea of autoencoders for anomaly detection is fully general and not

limited to these signals. We will comment on other forms of inputs in section 5. Moreover

there are many other anomaly detection techniques that are not based on autoencoder

and/or on reconstruction (loss) which are worth exploring in future work. At the same

time autoencoders have been recently used in other high energy physics applications:

in parton shower simulation [28], for feature selection of a supervised classification [30],

and for automated detection of detector aberrations in CMS [31].

We will explore various architectures for the autoencoder, from simple dense neural

networks to convolutional neural networks (CNNs), as well as a shallow linear represen-

tation in the form of Principal Component Analysis (PCA). We will see that while they

are all e↵ective at improving S/B by factors of ⇠ 10 or more, they have important dif-

ferences. The reconstruction errors of the dense and PCA autoencoders correlate more

highly with jet mass, leading to greater S/B improvement for the 400 GeV gluinos com-

pared to the CNN autoencoder. While this may seem better at first glance, we discuss

how one might want to use an autoencoder that is decorrelated with jet mass, in order

to obtain data-driven side-band estimates of the QCD background and perform a bump

hunt in jet mass. Indeed, we show how cutting on the reconstruction error of the CNN

autoencoder results in stable jet mass distributions, and we show how this can be used

to improve S/B by a factor of ⇠ 6 in a jet mass bump hunt for the 400 GeV gluino
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Figure 1. (Upper plot) ROC curves for the LDA top jet tag-
gers compared to the DeepTop tagger [22, 23] (colored trian-
gles) for events with fat-jets satisfying pT 2 [350, 450] GeV.
The purple star represents the default JH top tagger [8] ref-
erence point. (Lower plot) ROC curves for the tt̄ LDA event
classifiers compared to the classifiers from the DeepTop (col-
ored triangles) and the JH top tagger (purple star). In both
plots the shaded bands represent the mean-average-deviation
extracted from the k-folding procedure. See text for details.

ous supervised taggers in the literature [8, 22, 23]. We
see that the taggers perform well and with relatively
small variance, with the supervised tagger performing
the best. An interesting observation is that at high
background rejection rates (1/✏b � O(few)) the taggers
trained on smaller S/B perform slightly better than the
tagger trained on the S/B = 1 sample, although the dif-
ferences are comparable to the estimated uncertainties.
This is essentially because the algorithm is designed to
discern features in the jet substructure, which are sub-
sequnetly used to tag jets and events. In the supervised
and S/B = 1 case the algorithm discovers features in
top jets both near mj0 ⇠ mt and mj0 ⇠ mW (see the
right plot in Fig. 2), while in the lower S/B cases the
algorithm is only able to identify mj0 ⇠ mt as relevant.
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Figure 2. 2D projected probability distributions (in the plane
of mj0 and mj1/mj0 ) of the two latent themes discovered
in mixed (S/B = 1) QCD and tt̄ event samples with fat-jets
satisfying pT 2 [350, 450] GeV.

On the other hand, lower mj0 regions generically feature
more prominently in QCD jets (see left plot in Fig. 2).
Thus, while a very accurate determination of the fea-
tures near mj0 ⇠ mW in the supervised case helps the
performance of the tagging algorithm, the worse resolu-
tion in the unsupervised S/B = 1 case leads to worse
tagging performance compared to lower S/B examples.
We see that the performance of the unsupervised taggers
is comparable to the original JH top tagger [8], although
it falls short in comparison to the others. We note that
the observables we use mostly match those used in the
JH top tagger, hence the similar performance is indeed
encouraging.

In Fig. 1 (lower panel) we plot the ROC curves for our
tt̄ event classifiers, where a single document now con-
tains all jets within the selected pT region in an event,
and again compare these to the top jet taggers in the
literature. To make the comparison with other taggers
fair, we re-scale those results by defining an event tag-
ging e�ciency (✏e) in terms of the jet tagging e�ciency
(✏j) and the fraction of events in our pure samples with
one (f1) and two (f2) jets passing the selection cuts3,
✏e = (2✏j � ✏2j )f2 + ✏jf1. This means in practice that
tagging an event as tt̄ requires at least one jet in the
event to be tagged as a top jet. The ROC curves do
not change significantly under this re-scaling, instead the
points move along a trajectory towards higher e�ciencies
approximately equal to that of the ROC curve for jet tag-
ging. We see again that the classifier performs very well
in all cases, performing as well as the JH top tagger even
for low S/B.

3 We have checked that the fractions of events with zero or more
than two jets passing the selection cuts are negligible.
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Figure 1. Schematic view of the proposed method to compute the p-value of the null hypothesis
that the two samples are drawn from the same probability density.

The test statistic defined in Eq. (2.5) is also equal to the estimated Kullback-Leibler

(KL) divergence D̂KL(p̂T ||p̂B) between the estimated PDFs of trial and benchmark samples,

with the expectation value replaced by the empirical average (see Appendix A and in

particular Eq. (A.2)). The KL divergence plays a central role in information theory and can

be interpreted as the relative entropy of a probability distribution with respect to another

one. Our choice is also motivated by the fact that the log function in Eq. (2.5) makes the

test statistic linearly sensitive to small di↵erences between the distributions. Of course,

other choices for the test statistic are possible, based on an estimated divergence between

distributions other than the KL divergence, e.g. the Pearson squared-error divergence. The

exploration of other possibilities is beyond the scope of this paper and is left for future

work.

Ultimately, we want to conclude whether or not the null hypothesis can be rejected,

with a specified significance level ↵ (e.g. ↵ = 0.05), therefore we need to associate a

p-value to the null hypothesis, to be compared with ↵. To this end, we first need to

estimate the PDFs p̂B,T from the samples, then compute the test statistics TSobs observed

on the two given samples. Next, in order to evaluate the probability associated with the

observed value TSobs of the test statistic, we need to reconstruct its probability distribution

f(TS|H0) under the null hypothesis H0, and finally compute a two-sided p-value of the null

hypothesis.

The distribution of the test statistic is expected to be symmetric around its mean (or

median), which in general may not be exactly zero as a finite-sample e↵ect. Therefore, the

two-sided p-value is simply double the one-sided p-value.

A schematic summary of the method proposed in this paper is shown in Figure 1. In

the remainder of this section we will describe this procedure in detail.
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Figure 4. Scatter plot of R(x|m) versus log pbackground(x|m) across the test set in the SR. Background
events are shown (as a two-dimensional histogram) in grayscale and individual signal events are shown
in red.

Figure 5. Left: Histogram of R(x|m) evaluated on the test set; Right: the integrated number of
events that survive a threshold on R(x|m). The two distributions are scaled to represent the rates for
500,000 total background events and 500 total signal events, as introduced in Sec. 4.

to have the same number of events as each other and in total, the same as the SR. A single NN
with four hidden layers with 64 notes each is trained using Keras [120] and TensorFlow [121].
Dropout [122] of 10% is used for each intermediate layer. Intermediate layers use rectified
linear unit activation functions and the last layer uses a sigmoid. The classifier is optimized
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Example: LHCO R&D Dataset

Signal: Z’→XY; X,Y→qq; mZ’=3.5 TeV, mX=500 GeV, mY=100 GeV

Background: QCD dijets

S=500, B=500,000, BSR=61,000 

S/BSR~6x10-3, S/√BSR~1.5
Figure 2. Histograms for the invariant mass of the leading two jets for the Standard Model background
as well as the injected signal. There are 1 million background events and 1000 signal events.

epochs results in a stable result. Averaging over more epochs does not further improve the
stability. All results with ANODE present the SB density estimator with this averaging scheme
for the last 10 epochs.

Figure 4 shows a scatter plot of R(x|m) versus log pbackground(x|m) for the test set in the
SR. As desired, the background is mostly concentrated around R(x|m) = 1, while there is a long
tail for signal events at higher values of R(x|m) and between ≠2 < log pbackground(x|m) < 2.
This is exactly what is expected for this signal: it is an over-density (R > 1) in a region of
phase space that is relatively rare for the background (pbackground(x|m) π 1).

The background density in Fig. 4 also shows that the R(x|m) is narrower around 1 when
pbackground(x|m) is large and more spread out when pbackground(x|m) π 1. This is evidence
that the density estimation is more accurate when the densities are high and worse when
the densities are low. This is also to be expected: if there are many data points close to one
another, it should be easier to estimate their density than if the data points are very sparse.

Another view of the results is presented in Fig. 5, with one-dimensional information
about R(x|m) in the SR. The left plot of Fig. 5 shows that the background is centered and
approximately symmetric around R = 1 with a standard deviation of approximately 17%.
This width is due to various sources, including the accuracy of the SR density, the accuracy of
the SB density, and the quality of the interpolation from SB to SR. Each of these sources has
contributions from the finite size of the datasets used for training, the neural network flexibility,
and the training procedure. The right plot of Fig. 5 presents the number of background and
signal events as a function of a threshold R > Rc. The starting point are the original numbers
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Resonant feature
m = mZ0 = mJJ
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Figure 3. The four features used for classification: mJ1 (top left), mJ1 ≠ mJ2 (top right), ·J1
21 (bottom

left), and ·J2
21 (bottom right). These histograms are inclusive in mJJ . There are 1 million background

events and 1000 signal events for the mass histograms.

background (40,000) and signal (400) numbers in the SR window and the fiducial window.
Starting from low S/B and S/

Ô
B one can achieve S/B > 1 and a high S/

Ô
B with a threshold

requirement on R. Figure 6 shows that the signal is clearly visible in the x distribution after
applying such a threshold requirement.

The performance of R as an anomaly detector is further quantified by the Receiver
Operating Characteristic (ROC) and Significance Improvement Characteristic (SIC) curves in
Fig. 7. These metrics are obtained by scanning R and computing the signal e�ciency (true
positive rate) and background e�ciency (false positive rate) after a threshold requirement
on R. The Area Under the Curve (AUC) for ANODE is 0.82. For comparison, the CWoLa
hunting approach is also shown in the same plots. The CWoLa classifier is trained using
sideband regions that are 200 GeV wide on either side of the SR. The sidebands are weighted
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x = (mJ1 ,mJ2 , ⌧
J1
21 , ⌧

J2
21 )

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Additional features:

Signal: Z’→XY; X,Y→qq; mZ’=3.5 TeV, mX=500 GeV, mY=100 GeV

Background: QCD dijets

Example: LHCO R&D Dataset



Idea:  Leverage recent breakthroughs in high dimensional density 
estimation to find over-densities in the data that could be from new 
physics.

• estimate Pdata(x|m∈SR) with your favorite method

• estimate Pdata(x|m∉SR) with your favorite method

• interpolate Pdata(x|m∉SR) into SR to obtain  
Pbg(x|m∈SR). 

• Construct likelihood ratio R(x)=Pdata(x|m∈SR)/Pbg(x|m∈SR). 

ANODE: ANOmaly detection with Density Estimation
Ben Nachman & DS 2001.04990



ANODE: Results
Ben Nachman & DS 2001.04990

Figure 4. Scatter plot of R(x|m) versus log pbackground(x|m) across the test set in the SR. Background
events are shown (as a two-dimensional histogram) in grayscale and individual signal events are shown
in red.

Figure 5. Left: Histogram of R(x|m) evaluated on the test set; Right: the integrated number of
events that survive a threshold on R(x|m). The two distributions are scaled to represent the rates for
500,000 total background events and 500 total signal events, as introduced in Sec. 4.

to have the same number of events as each other and in total, the same as the SR. A single NN
with four hidden layers with 64 notes each is trained using Keras [120] and TensorFlow [121].
Dropout [122] of 10% is used for each intermediate layer. Intermediate layers use rectified
linear unit activation functions and the last layer uses a sigmoid. The classifier is optimized
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Figure 6. Distributions of mJ1 (left) and mJ2 ≠ mJ1 (right) in the signal region after applying a
threshold requirement on R.

Figure 7. Receiver Operating Characteristic (ROC) curve (left) and Significance Improvement
Characteristic (SIC) curve (right).

using binary cross entropy and is trained for 300 epochs. As with ANODE, 10 epochs are
averaged for the reported results3.

The performance of ANODE is comparable to CWoLa hunting in Fig. 7, which does
slightly better at higher signal e�ciencies and much better at lower signal e�ciencies. This
may be a reflection of the fact that CWoLa makes use of supervised learning and directly
approaches the likelihood ratio, while ANODE is unsupervised and attempts to learn both
the numerator and denominator of the likelihood ratio. With this dataset, ANODE is able to
enhance the signal significance by about a factor of 7 and would therefore be able to achieve a
local significance above 5‡ given that the starting value of S/

Ô
B is 1.6.

3A di�erent regularization procedure was used in Ref. [32, 33] based on the validation loss and k-folding.
The averaging here is expected to serve a similar purpose.
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Can construct a very sensitive discriminant this way.

Can enhance the significance of the bump hunt by a factor of up to 7!

uses conditional MAF (1705.07057) 
for density estimation



ANODE: Results
Ben Nachman & DS 2001.04990

5.2 Background Estimation

This section explores the possibility of using the estimate of pbackground(x|m) to directly
determine the background e�ciency in the SR after a requirement on R > Rc. Figure 8 presents
a comparison between integration methods (direct integration and importance sampling)
described in Sec. 3.2 and the true background yields. Qualitatively, both methods are able to
characterize the yield across several orders of magnitude in background e�ciency. However,
both methods diverge from the truth in the extreme tails of the R distribution. The right plot
of Fig. 8 o�ers a quantitative comparison between methods. For e�ciencies down to about
10≠3, both methods are accurate within about 25%. The direct integration method has a
smaller bias of about 10%. This is consistent with Fig. 5, for which the standard deviation is
between 10-20%.

Figure 8. Left: The number of events after a threshold requirement R > Rc using the two integration
methods described in Sec. 3.2, as well as the true background yield. Right: The ratio of the predicted
and true background yields from the left plot, as a function of the actual number of events that survive
the threshold requirement. The shaded bands around the central predictions are the 1‡ statistical
(Poisson) uncertainty derived from the observed background counts. The black dashed and dotted lines
are 10% and 20% around a ratio of 1.

5.3 Performance on a Dataset with Correlated Features

The results presented in the previous sections have established that ANODE is able to identify
the signal and estimate the corresponding SM backgrounds introduced in Sec. 4. One fortuitous
aspect of the chosen features x introduced in Sec. 4 is that they are all relatively independent
of mjj . This is illustrated in Fig. 9, using the SR and neighboring sideband regions. As a
result of this independence, the CWoLa method is able to find the signal and presumably the
ANODE interpolation from SB to SR is easier than if there was a strong dependence.

The purpose of this section is to study the sensitivity of the ANODE and CWoLa hunting
methods to correlations in the features x with mjj . Based on the assumptions of the two
methods, it is expected that with strong correlations, CWoLa hunting will fail to find the
signal while ANODE should still be able to identify the presence of signal in the SR as well
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Can estimate backgrounds directly with Pbg(x|m∈SR)

Figure 11. ROC (left) and SIC (right) curves in the signal region using the shifted dataset specified
by Eq. 5.1.

Figure 12. The same as Fig. 8, but for the shifted dataset. In particular, these plots compare the
background prediction from two direct density estimation techniques with the true background yield
after a threshold requirement R(x|m) > Rc.
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Robust against correlations in features (eg                              ) 

Figure 9. A comparison of the four features x between the SR and two nearby sidebands defined by
mjj œ [3.1, 3.3] TeV (lower sideband) and mjj œ [3.7, 3.9] TeV (upper sideband).

as estimate the background. To study this sensitivity in a controlled fashion, correlations
are introduced artificially. In practice, adding more features to x will inevitably result in
some dependence with mjj ; the artificial example here illustrates the challenges already in low
dimensions. New jet mass observables are created, which are linearly shifted:

mJ1,2 æ mJ1,2 + c mJJ , (5.1)

where c = 0.1 for this study. The resulting shifted lighter jet mass is presented in Fig. 10.
New ANODE and CWoLa models are trained using the shifted dataset and their perfor-

mance is quantified in Fig. 11. As expected, the fully supervised classifier is nearly the same as
Fig. 7. ANODE is still able to significantly enhance the signal, with a maximum significance
improvement near 4. While in principle ANODE could achieve the same classification accuracy
on the shifted and nominal datasets, the performance on the shifted examples is not as strong
as in Fig. 7. In practice the interpolation of pbackground into the SR is more challenging now
due to the linear correlations. This could possibly be overcome with improved training, better
choices of hyperparameters, or more sophisticated density estimation techniques.

By construction, there are now bigger di�erences between the SR and SB than between
the SR background and the SR signal. Therefore, the CWoLa hunting classifier is not able to
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Idea:  training data vs. raw simulation may not be sensitive to BSM, limited 
by quality of simulation. But it’s a shame to completely ignore simulations 
which include a lot of nontrivial physics. What if we could reweight 
simulation to look like data?

• Use DCTR reweighting method (1907.08209) to reweight background simulation to 
data in sidebands 

• Interpolate into SR

• Using reweighted simulation, generate a sample that follows Pbg(x|m∈SR)

• Train a classifier to distinguish data from this sample

• Obtain a discriminant that approaches R(x)=Pdata(x|m∈SR)/Pbg(x|m∈SR). 

SALAD: Simulation Assisted Likelihood-free Anomaly Detection
Anders Andreassen, Ben Nachman & DS 2001.05001



SALAD: Results
Anders Andreassen, Ben Nachman & DS 2001.05001

Figure 6. A histogram of the classifier output for a neural network trained to distinguish ‘data’
(Pythia) and ‘simulation’ (Herwig) in the signal region.

Figure 7. The four features used for machine learning in the signal region, before and after applying
dctr: jet mass (top) and the N -subjettiness ratios ·21 (bottom) for the more massive jet (left) and
the less massive jet (right).
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The reweighting+interpolation into the SR works well

Data: LHCO R&D dataset (same S&B as before)
Simulation: Herwig QCD dijets



SALAD: Results
Anders Andreassen, Ben Nachman & DS 2001.05001

Good sensitivity down to S/B ~ 1%

Data: LHCO R&D dataset (same S&B as before)
Simulation: Herwig QCD dijets

AUC about half way between Pythia and Herwig at high S/B, which is indicative of poor
performance at low e�ciency.

Figure 8. Four metrics for the sensitivity of the salad classifier as a function of the signal-to-
background ratio (S/B) in the signal region: the area under the curve (AUC) in the top left, the
maximum significance improvement (top right), the false positive rate at a fixed 50% signal e�ciency
(bottom left), and the significance improvement at the same fixed 50% signal e�ciency (bottom
right). The evaluation of these metrics requires signal labels, even though the training of the classifiers
themselves do not have signal labels. Error bars correspond to the standard deviation from training
five di�erent classifiers. Each classifier is itself the truncated mean over ten random initializations.

6 Background Estimation

The performance gains from Sec. 5 can be combined with a sideband background estimation
strategy, as long as threshold requirements on the classifier do not sculpt bumps in the
mjj spectrum. However, there is also an opportunity to use salad to directly estimate
the background from the interpolated simulation. Figure 9 illustrates the e�cacy of the
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• 10 groups submitted results on box 1

• 4 of these groups also submitted results on boxes 2 & 3

• A number of additional groups could not finish the challenge in 
time but got results on the R&D dataset

• 7 of these groups giving talks in this session about their methods 
and results

Overview of submissions

Thanks to all the groups that participated! 



Overview of submissions

People tried both supervised and unsupervised methods.

Methods used included

Stay tuned for an exciting session! 
The results of the LHCO2020 will be discussed in the final talk.

• variational RNNs for anti-QCD tagging

• density estimation

• biological neural network

• …

• Autoencoders

• CWoLa hunting

• PCA outlier detection

• LSTM

• CNN+BDT


