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History of the LHC Olympics

Prior to the LHC turn-on:

® Four dedicated workshops: July 2005 (CERN), February 2006 (CERN),August 2006
(KITP), March 2007 (Princeton).

® A number of black boxes consisting of reconstructed objects (electrons, photons, jets,
MET, etc) were prepared using Madgraph, Pythia & PGS

® Anticipation was high that the LHC would discover rewphysies supersymmetry right
away, so the focus was on characterizing the rew-physies supersymmetric model

® So almost all the black boxes were signal only and heavily based on supersymmetry

® And the primary goal was signal characterization (measuring masses, spins, branching
ratios)
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LHC Olympics 2020

Organizers: Gregor Kasieczka, Ben Nachman & David Shih

The LHC has been operating for ~10 years

® Despite countless model-specific searches for new physics at the LHC, no evidence for
new physics yet.

®  What if we're not looking in the right places?
® We need a new data challenge!

® New motivation: To spur the development of innovative, model-independent search
methods, especially using deep learning

® And now the primary goal of the challenge is anomaly detection: to find the signal in
the data if it is there (and then characterize it)



xcitement about Discovery Potential @ LHC

Then and now
iMISOJEXCITED

makeameme.org




Excitement about Discovery Potential @ LHC

Then and now
iMISOJEXCITED

makeameme.org

into the future



LHC Olympics 2020: Black Boxes

Organizers: Gregor Kasieczka, Ben Nachman & David Shih

Three black boxes of simulated data were prepared:
e | million events each
®  4-vectors of every reconstructed particle (hadron) in the event
® Particle ID, charge, etc not included
® Single R=1 jet trigger pT>1.2TeV

® Black boxes are meant to be representative of actual data, meaning they are mostly
background and may contain signals of new physics

In addition, a sample of IM QCD dijet events (produced with Pythia8 and
Delphes3.4.1) was provided as a background sample.

https://doi.org/10.5281/zenodo.3547721



LHC Olympics 2020: R&D Dataset

Organizers: Gregor Kasieczka, Ben Nachman & David Shih

Prior to the challenge, we also released a labeled R&D dataset consisting
of IM QCD dijet events and 100k signal events

g
No explicit search at the
mx=500 GeV LHC for this scenario!
o q
mz=3.5TeV « q
my=100 GeV
q

https://doi.org/10.5281/zenodo.2629072



LHC Olympics 2020: Submission format

Organizers: Gregor Kasieczka, Ben Nachman & David Shih

A p-value associated with the dataset having no new particles (null hypothesis).

Short answer text

As complete a description of the new physics as possible. For example: the masses and decay modes
of all new particles (and uncertainties on those parameters).

Short answer text

How many signal events (+uncertainty) are in the dataset (before any selection criteria).

Short answer text

Please consider submitting plots or a Jupyter notebook! (these will be private and used only for the
presentation / documentation at the end)

https://docs.google.com/forms/d/e/ | FAIpQLScw323fa9qpLbdMvGtr2YeqcGTJESZm | 8-umIDiPldi_ cWxVA/viewform



Elements of a successful search strategy (?)

What we thought it would take to do well in the challenge:
|. A model-agnostic search strategy with broad sensitivity to new physics

2. Accurate method of background estimation

(It is not enough to have a discriminant that is sensitive to new physics.
One must also be able to predict the background in the signal region!)
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Elements of a successful search strategy (?)

What we thought it would take to do well in the challenge:
|. A model-agnostic search strategy with broad sensitivity to new physics

2. Accurate method of background estimation

(It is not enough to have a discriminant that is sensitive to new physics.
One must also be able to predict the background in the signal region!)

We'll see to what extent this was true!

But first, let’s have a look at the landscape of model-
independent search strategies...



Overview of search strategies

Search strategies vary in their degrees of signal and background
model dependence

from Nachman & DS 2001.04990
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Existing Model Independent Searches

A brief history of model independent searches in HEP:

DO

Hl (Hera)

CDF

CMS
ATLAS

“Sleuth”

“General Search”

“Sleuth/Vista™

“MUSIC”

“Model independent
general search”

PRD 62:092004 (2000)
PRD 64:012004 (2001)
PRL 86:3712 (2001)

PLB 602:14-30 (2004)
0705.3721

0712.1311 PRD 78:012002 (2008)
0712.2534 (submitted to PRL, NEVER PUBLISHED)
0809.3781 PRD 79:011101 (2009)

CMS-PAS-EXO-14-016

1807.07447 EP|C 79:120 (2019)



Existing Model Independent Searches

The general idea behind all of these: data vs MC comparison

From CDF 0712.2534:

A global comparison of data to standard model pre-
diction is made in 16,486 kinematic distributions in 344
populated exclusive final states. In each final state, the

bottom quark (b), and missing momentum (p). Monte
Carlo event generators are used to determine the stan-
dard model prediction. VISTA partitions data and Monte

Existing searches compare many |ID histograms.

Optimal version would use DNN on full phase space to distinguish data
from background MC (D’Agnolo,Wulzer et al 1806.02350, 1912.12155)

Signal model independent but background model dependent
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See Pablo’s talk in this session for a comparison!
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A growing number of methods (CWolLa, ANODE, SALAD, ...) aim to
enhance the bump hunt using additional features:

Let m be a feature where the signal is assumed to be localized around m=m0 while the
background is smooth.

We can divide the data into the signal region: me(m0-0m,m0+dm) and the sideband
region mg(m0-0m,m0+0m)

Iraditional bump hunt

Let x be additional discriminating features

Can we formulate a model-agnostic discriminant R(x) which is broadly sensitive to
resonant new physics!?

B Pdam(a:|m - SR)
B@) =5 lm € SR)

would be optimal

Enhanced bump hunt



Signal: Z'— XY; X,Y = qq; mz=3.5 TeV, mx=500 GeV, my=100 GeV
Background: QCD dijets

Example: LHCO R&D Dataset
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S=500, B=500,000, Bsr=61,000
S/Bsr~6x10-3, S//Bsr~1.5



Signal: Z'— XY; X,Y = qq; mz=3.5 TeV, mx=500 GeV, my=100 GeV
Background: QCD dijets

Example: LHCO R&D Dataset
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ANODE: ANOmaly detection with Density Estimation

Ben Nachman & DS 2001.04990

|ldea: Leverage recent breakthroughs in high dimensional density

estimation to find over-densities in the data that could be from new
physics.

® estimate Pgaa(X|MeSR) with your favorite method

® estimate Pgaa(X|M&SR) with your favorite method

® interpolate Pdaa(X|Mmé&SR) into SR to obtain
Poe(X|meSR).

® Construct likelihood ratio R(x)=Pdata(X|mMeSR)/Ppg(x|meSR).
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Can construct a very sensitive discriminant this way.

Can enhance the significance of the bump hunt by a factor of up to 7!



ANODE: Results

Ben Nachman & DS 2001.04990

Can estimate backgrounds directly with Ppg(x|meSR)
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SALAD: Simulation Assisted Likelihood-free Anomaly Detection
Anders Andreassen, Ben Nachman & DS 2001.05001

Idea: training data vs. raw simulation may not be sensitive to BSM, limited
by quality of simulation. But it’s a shame to completely ignore simulations
which include a lot of nontrivial physics.What if we could reweight
simulation to look like data!?

e Use DCTR reweighting method (1907.08209) to reweight background simulation to
data in sidebands

® Interpolate into SR
e Using reweighted simulation, generate a sample that follows Ppg(x|meSR)
® Train a classifier to distinguish data from this sample

e  Obtain a discriminant that approaches R(x)=Pgawa(X|MmeSR)/Ppg(x|meSR).



Data: LHCO R&D dataset (same S&B as before)
Simulation: Herwig QCD dijets

SALAD: Results

Anders Andreassen, Ben Nachman & DS 2001.05001
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The reweighting+interpolation into the SR works well



Data: LHCO R&D dataset (same S&B as before)
Simulation: Herwig QCD dijets

SALAD: Results

Anders Andreassen, Ben Nachman & DS 2001.05001
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Good sensitivity down to S/B ~ |%



Overview of submissions

® |0 groups submitted results on box |
® 4 of these groups also submitted results on boxes 2 & 3

® A number of additional groups could not finish the challenge in
time but got results on the R&D dataset

® / of these groups giving talks in this session about their methods
and results

Thanks to all the groups that participated!



Overview of submissions

People tried both supervised and unsupervised methods.

Methods used included

®  Autoencoders
®  variational RNNs for anti-QCD tagging

e CWola hunting
®  density estimation

° PCA outlier detection

® biological neural network
e |STM

e CNN+BDT

Stay tuned for an exciting session!
The results of the LHCO2020 will be discussed in the final talk.



