OmniFold
Simultaneously Unfolding All Observables

Patrick T. Komiske III
Massachusetts Institute of Technology
Center for Theoretical Physics

1911.09107
with Anders Andreassen, Eric Metodiev, Ben Nachman, and Jesse Thaler

ML4Jets 2020 – NYU
January 17, 2020
Unfolding Basics

OmniFold

Z + Jet Case Study
Unfolding Basics

OmniFold

Z + Jet Case Study
Unfolding Setup

Measurements are affected by detector effects of finite resolution and limited acceptance.
Measurements are affected by detector effects of finite resolution and limited acceptance.
Unfolding Setup

Measurements are affected by *detector effects* of finite resolution and limited acceptance.

Truth-level measurements can be compared across experiments and to *theoretical calculations*.
Unfolding Setup

Measurements are affected by *detector effects* of finite resolution and limited acceptance.

Truth-level measurements can be compared across experiments and to theoretical calculations.

Goal of unfolding is to learn a generative particle-level model that reproduces the data.
Challenges with Traditional Unfolding

Previous methods are inherently binned
 - Binning fixed ahead of time, cannot be changed later
 - Performance of method sensitive to binning

Limited number of observables
 - Binning induces curse of dimensionality

Response matrix depends on auxiliary features
 - Detector-level quantity may not capture full detector effect
Challenges with Traditional Unfolding

Previous methods are inherently binned
- Binning fixed ahead of time, cannot be changed later
- Performance of method sensitive to binning

Limited number of observables
- Binning induces curse of dimensionality

Response matrix depends on auxiliary features
- Detector-level quantity may not capture full detector effect

Example – Two jets acquiring the same mass in different ways

Jet 1
Two hard prongs

Jet 2
Hard core, diffuse spray
Challenges with Traditional Unfolding

Previous methods are inherently binned
Binning fixed ahead of time, cannot be changed later
Performance of method sensitive to binning

Limited number of observables
Binning induces curse of dimensionality

Response matrix depends on auxiliary features
Detector-level quantity may not capture full detector effect

Example – Two jets acquiring the same mass in different ways

Jet 1
Two hard prongs

Jet 2
Hard core, diffuse spray

Example with IBU
ATLAS State-of-the-art Lund Plane Measurement
[ATLAS-CONF-2019-035]

21 x 15 bins in \(\ln(1/z) \times \ln(R/\Delta R) \)
- Must redo unfolding for other binnings e.g. finer/coarser, \(k_T \) (diagonal) binning, etc.

Limited to two observables
- \(21^2 \times 15^2 \) elements in response matrix \(R \)
- Going differential in \(n \) bins of \(p_T \) would multiply size of \(R \) by \(n^2 \)
Unfolding Basics

OmniFold

Z + Jet Case Study
Unfolding via Likelihood Reweighting

Likelihood ratio is optimal binary classifier by Neyman-Pearson lemma

\[L[(w, X), (w', X')](x) = \frac{p(w, X)(x)}{p(w', X')(x)} \]

- \(L \) – likelihood ratio
- \(w \) – weights
- \(X \) – phase space
- \(x \) – element of \(X \)
- \(p \) – probability density
Unfolding via Likelihood Reweighting

Likelihood ratio is optimal binary classifier by Neyman-Pearson lemma

\[
L[(w, X), (w', X')](x) = \frac{p(w, X)(x)}{p(w', X')(x)}
\]

- \(L\) – likelihood ratio
- \(w\) – weights
- \(X\) – phase space
- \(x\) – element of \(X\)
- \(p\) – probability density

Model output of a well-trained classifier accesses likelihood ratio

\[
\text{Model}[(w, X), (w', X')](x) \simeq \frac{L[(w, X), (w', X')](x)}{1 + L[(w, X), (w', X')](x)}
\]

Assuming softmax output

[Cranmer, Pavez, Louppe, 1506.02169; Andreassen, Nachman, 1907.08209]
Unfolding via Likelihood Reweighting

Likelihood ratio is optimal binary classifier by Neyman-Pearson lemma

\[L[(w, X), (w', X')](x) = \frac{p(w, X)(x)}{p(w', X')(x)} \]

- \(L \) – likelihood ratio
- \(w \) – weights
- \(X \) – phase space
- \(x \) – element of \(X \)
- \(p \) – probability density

Model output of a well-trained classifier accesses likelihood ratio

\[\text{Model}[(w, X), (w', X')](x) \approx \frac{L[(w, X), (w', X')](x)}{1 + L[(w, X), (w', X')](x)} \]

Assuming softmax output

[Cranmer, Pavez, Louppe, 1506.02169; Andreassen, Nachman, 1907.08209]

OmniFold repeatedly reweights one weighted sample (A) to another (B)

\[w_{A'}(x) = w_A(x) \times \frac{\text{Model}[(w_B, B), (w_A, A)](x)}{1 - \text{Model}[(w_B, B), (w_A, A)](x)} \]

- \(A' \) is statistically indistinguishable from \(B \)

Likelihood reweighting benefits from architectural improvements
OmniFold weights particle-level Gen to be consistent with Data once passed through the detector.
OmniFold weights particle-level Gen to be consistent with Data once passed through the detector.

Step 1:

Reweights ν_{n-1} to data, pulls weights back to particle-level Gen_{n-1}
OmniFold algorithm – schematic

OmniFold weights particle-level Gen to be consistent with Data once passed through the detector.

Step 1: Reweights Sim\(_{n-1}\) to data, pulls weights back to particle-level Gen\(_{n-1}\)

Step 2: Reweights Gen\(_{n-1}\) to (step 1)-weighted gen\(_{n-1}\), pushes weights to detector-level Sim\(_n\)
OmniFold Algorithm – Equations

Inputs

\((t, m)\) – pairs of Gen and Sim events
\(\nu_0(t)\) – initial particle-level weights for Gen
– Data

Results of Steps 1 and 2

\(\nu_n(t)\) – particle-level weights for Gen, \(n^{th}\) iteration
\(\omega_n(m)\) – detector-level weights for Sim, \(n^{th}\) iteration

Pulling/Pushing Weights

\(\omega_n^{\text{pull}}(t) = \omega_n(m)\) – pulling \(\omega_n\) back to particle-level
\(\nu_n^{\text{push}}(m) = \nu_n(t)\) – pushing \(\nu_n\) to detector-level
OmniFold Algorithm – Equations

Inputs

\((t, m)\) – pairs of Gen and Sim events
\(\nu_0(t)\) – initial particle-level weights for Gen
– Data

Results of Steps 1 and 2

\(\nu_n(t)\) – particle-level weights for Gen, \(n^{th}\) iteration
\(\omega_n(m)\) – detector-level weights for Sim, \(n^{th}\) iteration

Pulling/Pushing Weights

\(\omega_n^{\text{pull}}(t) = \omega_n(m)\) – pulling \(\omega_n\) back to particle-level
\(\nu_n^{\text{push}}(m) = \nu_n(t)\) – pushing \(\nu_n\) to detector-level

OmniFold

Step 1

\[\omega_n(m) = \nu_{n-1}^{\text{push}} \times L[(1, \text{Data}), (\nu_{n-1}^{\text{push}}, \text{Sim})](m)\]

Step 2

\[\nu_n(t) = \nu_{n-1}(t) \times L[(\omega_n^{\text{pull}}, \text{Gen}), (\nu_{n-1}, \text{Gen})](t)\]

Unfold any observable \(p_{\text{Gen}}(t)\) using universal weights \(\nu_n(t)\)

\[p_{\text{unfolded}}^{(n)}(t) = \nu_n(t) \times p_{\text{Gen}}(t)\]

Observables should be chosen responsibly
OmniFold Algorithm – Equations

Inputs

\((t, m)\) – pairs of Gen and Sim events
\(\nu_0(t)\) – initial particle-level weights for Gen
- Data

Results of Steps 1 and 2

\(\nu_n(t)\) – particle-level weights for Gen, \(n^{th}\) iteration
\(\omega_n(m)\) – detector-level weights for Sim, \(n^{th}\) iteration

Pulling/Pushing Weights

\(\omega_n^{\text{pull}}(t) = \omega_n(m)\) – pulling \(\omega_n\) back to particle-level
\(\nu_n^{\text{push}}(m) = \nu_n(t)\) – pushing \(\nu_n\) to detector-level

OmniFold

Step 1 – \(\omega_n(m) = \nu_n^{\text{push}} \times L[(1, \text{Data}), (\nu_n^{\text{push}}, \text{Sim})](m)\)
Step 2 – \(\nu_n(t) = \nu_{n-1}(t) \times L[(\omega_n^{\text{pull}}, \text{Gen}), (\nu_{n-1}, \text{Gen})](t)\)

Unfold any* observable \(p_{\text{Gen}}(t)\) using universal weights \(\nu_n(t)\)

\(p_{\text{unfolded}}^{(n)}(t) = \nu_n(t) \times p_{\text{Gen}}(t)\)

OmniFold is continuous IBU!

(See backup for IBU details)

After first iteration, with \(\nu_0(t) = 1\):

\(\nu_1(t)p_{\text{Gen}}(t) = \int dm p_{\text{Gen} | \text{Sim}}(t|m)p_{\text{Data}}(m)\)

*Observables should be chosen responsibly
Unfolding Basics

OmniFold

Z + Jet Case Study
Ingredients for $Z + \text{Jet}$ Case Study

$Z(\rightarrow \mu^+\mu^-) + \text{Jet Events}$

“Data” – HERWIG 7.1.5
MC – PYTHIA 8.243, tune 26
1.6 million events each after cuts

Detector Simulation
CMS-like detector – DELPHES 3.4.2

Jets
Anti-$k_T, R = 0.4$ – FASTJET 3.3.2
$p_T^Z > 200$ GeV, assume excellent muon detector resolution

Datasets publicly available
– with two additional Pythia tunes
– accessible via EnergyFlow

OmniFold Binder Demo
Ingredients for $Z + \text{Jet}$ Case Study

$Z(\rightarrow \mu^+ \mu^-) + \text{Jet Events}$

“Data” – HERWIG 7.1.5
MC – PYTHIA 8.243, tune 26
1.6 million events each after cuts

Detector Simulation
CMS-like detector – DELPHES 3.4.2

Jets
Anti-k_T, $R = 0.4$ – FASTJET 3.3.2
$p_T^Z > 200$ GeV, assume excellent muon detector resolution

Datasets publicly available
– with two additional Pythia tunes
– accessible via EnergyFlow

OmniFold Binder Demo

Particle Flow Network (PFN) architecture processes full radiation pattern of the event

- PFN-Ex: $(p_T, y, \phi, \text{PID})$ input features
- Φ : (100, 100, 256) dense layers
- F : (100, 100, 100) dense layers
- ReLU activations, softmax output
- Categorical cross-entropy loss
- 20% validation sample
- 10 epoch patience
OmniFolding Jet Substructure Observables

Single OmniFold instantiation vs. individual applications of IBU

OmniFold equals or outperforms IBU

Five unfolding iterations in all cases

Statistical uncertainties on prior shown in ratio

(See backup for more distributions)
OmniFold Results by Event Representation

User is free to choose *event representation* in the OmniFold procedure

OmniFold – full phase space information

MultiFold – multiple observables

UniFold – single observable, essentially unbinned IBU

<table>
<thead>
<tr>
<th>Observable</th>
<th>mass</th>
<th>mult.</th>
<th>width</th>
<th>(\ln \rho)</th>
<th>(\tau_{21})</th>
<th>(z_g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMNIFold</td>
<td>2.77</td>
<td>0.33</td>
<td>0.10</td>
<td>0.35</td>
<td>0.53</td>
<td>0.68</td>
</tr>
<tr>
<td>MULTIFold</td>
<td>3.80</td>
<td>0.89</td>
<td>0.09</td>
<td>0.37</td>
<td>0.26</td>
<td>0.15</td>
</tr>
<tr>
<td>UNIFold</td>
<td>8.82</td>
<td>1.46</td>
<td>0.15</td>
<td>0.59</td>
<td>1.11</td>
<td>0.59</td>
</tr>
<tr>
<td>IBU</td>
<td>9.31</td>
<td>1.51</td>
<td>0.11</td>
<td>0.71</td>
<td>1.10</td>
<td>0.37</td>
</tr>
<tr>
<td>Data</td>
<td>24.6</td>
<td>130</td>
<td>15.7</td>
<td>14.2</td>
<td>11.1</td>
<td>3.76</td>
</tr>
<tr>
<td>Generation</td>
<td>3.62</td>
<td>15</td>
<td>22.4</td>
<td>19</td>
<td>20.8</td>
<td>3.84</td>
</tr>
</tbody>
</table>

Evaluate performance using triangular discriminator

\[
\Delta(p, q) = \frac{1}{2} \int d\lambda \frac{(p(\lambda) - q(\lambda))^2}{p(\lambda) + q(\lambda)} \times 10^3
\]

Single **MultiFold** training based on all six observables

UniFold is similar to or outperforms IBU

OMNIFold/MultiFold outperform IBU on all observables!
Unfolding Beyond Observables

Energy Mover’s Distance (EMD)

is a metric on the space of events

[PTK, Metodiev, Thaler, 1902.02346]

EMD enables calculating

correlation dimension of jets

\[
\dim = 1 \quad \text{dim} = 2
\]

\[
\dim \to 0 \quad \dim = 0
\]

\[
\dim(Q) = Q \frac{\partial}{\partial Q} \ln \sum_i \sum_j w_i w_j' \Theta(\text{EMD}(E_i, E_j') < Q)
\]

Weighted events naturally accommodated

(See yesterday’s talks by Eric Metodiev and Jack Collins)
Unfolding Beyond Observables

Energy Mover’s Distance (EMD) is a metric on the space of events

[PTK, Metodiev, Thaler, 1902.02346]

EMD enables calculating correlation dimension of jets

\[
\dim = 1 \quad \dim = 2
\]

\[
\dim \rightarrow 0 \quad \dim = 0
\]

\[
\dim(Q) = Q \frac{\partial}{\partial Q} \ln \sum_i \sum_j w_i w_j' \Theta(\text{EMD}(E_i, E_j < Q))
\]

Weighted events naturally accommodated

(See yesterday’s talks by Eric Metodiev and Jack Collins)
Energy Mover’s Distance (EMD) is a metric on the space of events

[PTK, Metodiev, Thaler, 1902.02346]

EMD enables calculating correlation dimension of jets

\[\dim = 1 \quad \dim = 2 \]

\[\dim \to 0 \quad \dim = 0 \]

\[\dim(Q) = Q \frac{\partial}{\partial Q} \ln \sum_i \sum_j w_i w_j' \Theta(\text{EMD}(E_i, E_j') < Q) \]

Weighted events naturally accommodated

(See yesterday’s talks by Eric Metodiev and Jack Collins)

Same OmniFold training can unfold a complicated function of pairs of events!

Larger detector effects and loss of stats seen at low \(Q \)
Unfolding Basics

Measurements are unfolded to mitigate detector effects

Standard unfolding is binned and low-dimensional

OmniFold

ML-based method simultaneously unfolds all observables

Unbinned, full phase-space information

Z + Jet Case Study

MC study of a realistic measurement with public datasets

OmniFold, MultiFold, UniFold ready for action
OmniFold Etymology

The Mountain sat upon the Plain
In his tremendous Chair —
His observation omnifold,
His inquest, everywhere —

The Seasons played around his knees
Like Children round a sire —
Grandfather of the Days is He
Of Dawn, the Ancestor —

Emily Dickinson, #975
OmniFold Etymology

The Mountain sat upon the Plain
In his tremendous Chair –
His observation omnifold,
His inquest, everywhere –

The Seasons played around his knees
Like Children round a sire –
Grandfather of the Days is He
Of Dawn, the Ancestor –

Emily Dickinson, #975

Kluge OmniFold 3000 Automatic Folding and Gluing System
Additional Slides
Future Directions

Challenges

Dealing with detector inefficiencies
- Apply more restrictive cuts after unfolding
- Include gen/sim pairs with empty events in the training

Systematic uncertainties
- Existing strategies should reasonably carry over
- Parametrize high-dimensional systematic uncertainties, see [Nachman, 1909.03081]

Opportunities

Training ML models on unfolded data
- OmniFold allows any model that can be defined on weighted data to be unfolded

OmniFold and CMS Open Data
- CMS 2011A Jet dataset processed into simple to use HDF5 files
Iterated Bayesian Unfolding (IBU)

Histogram-based unfolding method for a small number of observables

Choose observable(s) and binning at detector-level and particle-level

measured distribution: \(m_i = \Pr(\text{measure } i) \)
true distribution: \(t_j^{(0)} = \Pr(\text{truth is } j) \)

Calculate response matrix \(R_{ij} \) from generated/simulated pairs of events

\[R_{ij} = \Pr(\text{measure } i \mid \text{truth is } j) \]
\(R \) is in general non-square and non-invertible

Calculate new particle-level distribution using Bayes’ theorem

\[t_j^{(n)} = \sum_i \Pr(\text{truth}_{n-1} \text{ is } j \mid \text{measure } i) \times \Pr(\text{measure } i) = \sum_i \frac{R_{ij} t_j^{(n-1)}}{\sum_k R_{ik} t_k^{(n-1)}} \times m_i \]

Iterate procedure to remove dependence on prior

[Richardson, 1972; Lucy, 1974; D’Agostini, 1995]
Additional OmniFolded Distributions

Jet mass affected by particle masses

IRC-safe observables easier to unfold

z_g remarkably stable under choice of method
The Energy Mover’s Distance (EMD)

EMD between energy flows defines a metric on the space of events

\[
\text{EMD}(\mathcal{E}, \mathcal{E}') = \min_{\{f_{ij} \geq 0\}} \sum_i \sum_j f_{ij} \frac{\theta_{ij}}{R} + \left| \sum_i E_i - \sum_j E'_j \right|
\]

Cost of optimal transport

\[
\sum_j f_{ij} \leq E_i, \quad \sum_i f_{ij} \leq E'_j, \quad \sum f_{ij} = \min \left(\sum_i E_i, \sum_j E'_j \right)
\]

Cost of energy creation

Triangle inequality satisfied for \(R \geq d_{\text{max}} / 2 \)

\[
0 \leq \text{EMD}(\mathcal{E}, \mathcal{E}') \leq \text{EMD}(\mathcal{E}, \mathcal{E}'') + \text{EMD}(\mathcal{E}'', \mathcal{E}')
\]
Manifold Dimensions of Event Space

Correlation dimension: how does the # of elements within a ball of size Q change?

$$\dim(Q) = Q \frac{\partial}{\partial Q} \ln \sum_i \sum_j \Theta(\text{EMD}(\mathcal{E}_i, \mathcal{E}'_j) < Q)$$

Correlation dimension lessons:
- Decays are "constant" dim. at low Q
- Expect $3 + 1$
- Expect $1 + 1$

E_{MD}: Intrinsic Dimension
- PYTHIA 8.235, $\sqrt{s} = 14$ TeV
- $R = 1.0$, $p_T \in [500, 550]$ GeV

$N_{\text{neigh.}}(Q) \propto Q^\dim \implies \dim(Q) = Q \frac{d}{dQ} \ln N_{\text{neigh.}}(Q)$
Manifold Dimensions of Event Space

Correlation dimension: how does the # of elements within a ball of size Q change?

$$N_{\text{neigh.}}(Q) \propto Q^\text{dim} \implies \text{dim}(Q) = Q \frac{d}{dQ} \ln N_{\text{neigh.}}(Q)$$

Correlation dimension lessons:
- Decays are "constant" dim. at low Q
- Complexity hierarchy: QCD < W < Top
- Fragmentation increases dim. at smaller scales

$$\text{dim}(Q) = Q \frac{d}{dQ} \ln \sum_i \sum_j \Theta(\text{EMD}(\mathcal{E}_i, \mathcal{E}'_j) < Q)$$

EMD: Intrinsic Dimension
PYTHIA 8.235, $\sqrt{s} = 14$ TeV
$R = 1.0$, $p_T \in [500, 550]$ GeV

- Red: Top jets
- Green: W jets
- Blue: QCD jets
- Black: Partons
- Dotted: Decays

[Grassberger, Procaccia, PRL 1983; PTK, Metodiev, Thaler, 1902.02346]
Manifold Dimensions of Event Space

Correlation dimension: how does the # of elements within a ball of size Q change?

$$\text{dim} = 1 \quad \text{dim} = 2 \quad \text{dim} \to 0$$

$$N_{\text{neigh.}}(Q) \propto Q^{\text{dim}} \implies \text{dim}(Q) = Q \frac{d}{dQ} \ln N_{\text{neigh.}}(Q)$$

Correlation dimension lessons:
- Decays are "constant" dim. at low Q
- Complexity hierarchy: QCD < W < Top
- Fragmentation increases dim. at smaller scales
- Hadronization important around 20-30 GeV

$$\text{dim}(Q) = Q \frac{\partial}{\partial Q} \ln \sum_i \sum_j \Theta(\text{EMD}(\mathcal{E}_i, \mathcal{E}'_j) < Q)$$

EMD: Intrinsic Dimension
- **PYTHIA 8.235, $\sqrt{s} = 14$ TeV**
- $R = 1.0, p_T \in [500, 550]$ GeV

<table>
<thead>
<tr>
<th>Correlation Dimension</th>
<th>Energy Scale Q (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top jets</td>
<td></td>
</tr>
<tr>
<td>W jets</td>
<td></td>
</tr>
<tr>
<td>QCD jets</td>
<td></td>
</tr>
<tr>
<td>Hadrons</td>
<td></td>
</tr>
<tr>
<td>Partons</td>
<td></td>
</tr>
<tr>
<td>Decays</td>
<td></td>
</tr>
</tbody>
</table>

[Grassberger, Procaccia, *PRL* 1983; PTK, Metodiev, Thaler, 1902.02346]
Quark and Gluon Correlation Dimensions

Leading log (single emission) calculation:

$$\text{dim}_i(Q) \simeq -\frac{8\alpha_s}{\pi} C_i \ln \frac{Q}{p_T/2}$$

$C_F = 4/3$

$C_A = 3$

EMD: Intrinsic Dimension

Pythia 8.230, $\sqrt{s} = 14$ TeV

$R = 1.0$, $p_T \simeq 500$ GeV