Cornering charming Higgs decays

Joseph Walker, Frank Krauss

Machine Learning for Jets Physics 2020 New York University 17th January 2020

Contents

- Why look at H -> cc
- Processes considered
- Data collection
- Observables, Images and Particle Flows
- Training case study
- FIFO Rivet <-> Python
- Network Voting
- Results and outlook

Can we pin down the yukawa coupling for light fermions?

$$\kappa_c = rac{y}{y_{SM}}$$

Current upper bound from CMS [1]

$$rac{\sigma(VH)Br(H o car{c})}{\sigma_{SM}(VH)Br_{SM}(H o car{c})} = \kappa_c^2 < 70(37^{+16}_{-10})$$

Charming higgs decays dominated by huge backgrounds

[1] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) and 2019 update 6th December, 2019

17/01/2020

Signals

We consider three signal processes

This gives us 3 channels;

0 Isolated Leptons 1 Isolated Leptons

2 Isolated Leptons

Signals

We consider three signal processes

This gives us 3 channels;

0 Isolated Leptons 1 Isolated Leptons

2 Isolated Leptons

Using fat jets as a gateway to background elimination

Backgrounds

In total 19 background runcards are used;

- Higgs couplings turned off
- MEPS(2)
- Decay of one vector boson is enforced in the hard matrix element

Data

Data is generated using Sherpa 2.7.7 at MEPS(2) for a selection of Backgrounds. Analysis performed by Rivet 2.7.0 and Fastjets 3.3.2

Many Runcards are used to boost the efficiency of backgrounds being generated.

We find fatjets with R=1 with the Anti-Kt algorithm with pT > 250 GeV

We apply a set of simple cuts to identify candidate fatjets

All surviving events are analysed and three data structures are saved;

- 1. Observables [2]
- 2. Jet Images [3]
- 3. Particle Flows [4]

[2] arXiv:1712.03634 & arXiv:1106.3076 [3] arXiv:1612.01551 & arXiv:1407.5675
 [4] arXiv:1810.05165v2

Z

Cutflows

We have 3 cut flows / 3 channels.

- 0. Eta and pT cuts on event
- A Missing Transverse Energy condition 0: < 10 GeV 1: > 80 GeV 2: < 10 GeV
- 2. Demand N isolated leptons
- 3. Demand at least 1 R = 1.0 fatjet, pT > 250 GeV
- 4. Pick fatjet with suitable properties
 - a. C tagged
 - b. |JetMass 125 GeV| < 30 GeV
- Demand 2 R = 0.4 jets OR Demand Isolated leptons and cadidate jet back-to-back.

Cuts based on arXiv:1912.01662

17/01/2020

Chosen Processes

We collect data from any process with an expectation of surviving events for $\int \mathcal{L} dt = 3000 f b^{-1}$ **0** Isolated Leptons 1 Isolated Leptons 2 Isolated Leptons

- 1. VBF (11%)
- 2. WZ[qq] (0.90%)
- 3. WW[qq] (0.14%)
- 4. t[bw]t[bw] (0.017%)
- 5. WZ[II] (0.012%)
- W[qq] (0.0034%) 6.
- 7. Z[II] (0.0002%)
- Z[qq] (0.0001%) 8.

These runcards are boosted to generate balanced classes

- W Higgs-Strahlung (10%) 1.
- t[bw]t[bw] (0.016%) 2.
- WW[lv] (0.0098%) 3.
- 4. W[lv]Z (0.0057%)
- W[lv] (0.0006%) 5.

- Z Higgs-Strahlung (17%) 1.
- 2. WZ[II] (0.16%)
- 3. Z[II] (0.0020%)
- Z[qq] (0.0020%) 4.

Chosen Processes - Cross sections

We collect data from any process with an expectation of surviving events for $\int \mathcal{L} dt = 3000 fb^{-1}$ 0 Isolated Leptons 1 Isolated Leptons 2 Isolated Leptons

- 1. VBF 0.19(4) pb
- 2. WZ[qq] 20(1) pb
- 3. WW[qq] 0.12(2) nb
- 4. t[bw]t[bw] 5.4(7) pb
- 5. WZ[II] 1.8(1) pb
- 6. W[qq] 90(5) nb
- 7. Z[II] 3.3(1) nb
- 8. Z[qq] 27(2) nb

 $\frac{S}{B}$

- W Higgs-Strahlung 1. 0.008(2) pb
- 2. t[bw]t[bw] 5.4(7) pb
- 3. WW[lv] 31(4) pb
- 4. W[lv]Z 2.9(3) pb
- 5. W[lv] 29(2) nb

- 1. Z Higgs-Strahlung 0.00123(4) pb
- 2. WZ[II] 1.8(1) pb
- 3. Z[II] 3.3(1) nb
- 4. Z[qq] 27(2) nb

 $rac{S}{R}\simeq 10^{-7}$

$$\simeq 10^{-6}$$
 $rac{S}{B}\simeq 10^{-7}$

LO Cross sections!

-0.2

Create RGB images

red ~ Energy green ~ Perpendicular momentum to jet momentum blue ~ Charge particle multiplicity

Jet axis lined up with (0,0) pixel Sum up variables in each bin then rescale

~15k Trainable Parameters

A mean 'background image'

Particles in jet ordered in decreasing energy

Form a sequence of 10 particles to be fed into a particle flow network.

1. $\Delta \eta$

 \mathbf{a}

A /

Ζ.	$\Delta \phi$		DEta	DDbj	log(nt)	log(E)	log(nt/jotnt)	log(E/iotE)	DD
3	$log(p_T)$	0	0.012631	-0.054196	5.04692	5.57067	-0.590013	-0.570963	0.055648
J.	$J(\mathbf{r} 1)$	1	0.334012	-0.252075	2.35535	3.09847	-3.281580	-3.043170	0.418456
4.	log(E)	2	0.231418	0.024186	2.67646	2.97307	-2.960470	-3.168560	0.232679
_		3	0.208372	0.038378	2.50181	2.81440	-3.135130	-3.327240	0.211877
5.	$log(p_T/p_{Tjet})$	4	0.349394	-0.149882	2.02044	2.77714	-3.616490	-3.364500	0.380186
6.	$log(E/E_{jet})$	56	0.224771 0.117750	0.326364	2.24209 1.88444	2.54319 2.44333	-3.394850 -3.752490	-3.598450 -3.698310	0.396277
	•								

- 7. ΔR
- 8. PID

~1.6k Trainable Parameters

The pipeline

- 1. Determine appropriate backgrounds for each channel
- 2. Boost events to give balanced classes ~10k samples
- 3. Normalise and rescale data
- 4. Learn in tensorflow

Observables

Observables

Sherpa -> Rivet Analysis

<-->

Python

_ reduce wax for 5 7 1 1 m. [6 6] for a	υ./15086 (eps = 0.001)	Ims [0.97180384, 1]
Read in channels from directory : Results	Flow [0.9024279, 1]	
	Obs [0.81896096, 1]	
2_3_ <u>J_J_</u> W-[V_V]_J : 4244.04 pD +- (Ims [0.96480846, 1]	
A coduce may for 2 2 i i U [0 0] i i	= 0.502677 (-0.5 - 0.001)	Flow [0.91917694, 1]
	10 0.595677 (eps = 0.001)	Obs [0.99326575, 1]
- SHEPPA generates events with the follo	Ims [0.9584786, 1]	
Sheki'A generates events with the rotte		FLow [0.89479154, 1]
Perturbative · Signal Processes		Obs [0.994/601, 1]
Perturbative : Hard Decays		Ims [0.9261591, 1]
Perturbative : let Evolution:CSS		FLOW [0.8904244, 1]
Perturbative : Lepton ES OED Correc	tions:Photons	Obs [0.9974905, 1]
Perturbative : Multiple Interaction		Ims [0.9860474, 1]
Perturbative · Minimum Bias:Off	13:10116	Flow [0.8871511, 1]
Hadsopization : Roam Dompants		Obs [0.7706096, 1]
Hadronization : Hadronization: Abadi	-	Ims [0.9582879, 1]
		Flow [0.9047799, 1]
		Obs [0.9870056, 1]
Applysis Divet		Ims [0.88494724, 1]
Analysis : River		Flow [0.49075803, 0]
Divot Applycic Upodloct MADN Applycic /	TatlateQuest is upualidated, be caseful it ma	Obs [0.99569356, 1]
Rivet.Analysis.Handler: WARN Analysis i	-atjetswiep is unvalidated: de careful, it ma	Ims [0.939048, 1]
y de droken: Divet Anglusia Unadlana UADN, Anglusia U		Flow [0.8998179, 1]
Rivet.Analysis.Handler: WARN Analysis I	-atjetsilep' is unvalidated: de carerul, it ma	Obs [0.99020326, 1]
y de droken!		Ims [0.94132274, 1]
Rivet.Analysis.Handler: WARN Analysis I	-atjetszlep' is unvalidated: be careful, it ma	Flow [0.91626483, 1]
y be broken!		Obs [0.9833592, 1]
#		Ims [0.949657, 1]
# FastJet_release	2 3.3.1	Flow [0.9092387, 1]
# M. Cacciari, G.P. Salar	n and G. Soyez	Obs [0.99601537, 1]
# A software package for jet finding	Ims [0.9835242, 1]	
# http://fastje	et.fr	Flow [0.9188933, 1]
#		Obs [0.42806774. 0]
<pre># Please cite EPJC72(2012)1896 [arXiv:11]</pre>	Ims [0.20386374, 0]	
# for scientific work and optionally PLB0	Flow [0.8513089, 1]	
#		Obs [0.9964684.1]
<pre># FastJet is provided without warranty up</pre>	Ims [0.97812784, 1]	
# It uses T. Chan's closest pair algorith	Flow [0.9187265, 1]	
# and 3rd party plugin jet algorithms. Se	ee COPYING file for details.	Obs [0.9929892, 1]
#		Ims [0.9795156, 1]
Event 200 (1s elapsed / 5s left) -> I	Flow [0.90042114, 1]	
XS = 107484 pb +- (10097 pb = 9.39 %)		

FIFO

Voting

Each network returns a probability for each class.

We have a naive voting system, but can we do better?

Voting

The networks are providing complementary information! More classifying power!

Voting

The networks are providing complementary information! More classifying power!

Only a few 1K data points (for now!)

Time to learn

Learn how to vote!

Combined networks give superior killing power than individual networks!

 $rac{\sigma(VH)Br(H
ightarrow car{c})}{\sigma_{SM}(VH)Br_{SM}(H
ightarrow car{c})}=\kappa_c^2$ $Br_{SM}(H o car{c}) = 2.89 imes 10^{-2} \, {}^{+5.5\%}_{-2.0\%}$ 1σ 95% confidence Z Higgs-Strahlung ML W Higgs-Strahlung ML X VBF ML × Z Higgs-Strahlung W Higgs-Strahlung VBF -2020 0 40 κ_c at $\int \mathcal{L} dt = 300 f b^{-1}$

Key points

- 1. A proof of concept
- 2. Promising results
- 3. Pipeline ready to go!

Considerations

- 1. This was only a LO study
- 2. Possibility to consider more backgrounds
- 3. Detector simulation
- 4. More data!

Backups

- 1. Network Architectures
- 2. Chosen Observables
- 3. Distributions

Architectures

Chosen Observables

A good observable: Jet Mass

A bad observable: Jet Rapidity

Chosen Observables

A bad observable: Jet Rapidity

A good observable: Jet Mass

17/01/2020

Distributions

Sanity checks - 2 Isolated lepton channel Candidate fatjet distributions

Leptons invariant mass

