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Variational Recurrent Neural Network (VRNN)

- Based on a Recurrent Neural Network (RNN)
- Architecture which allows for variable amount of inputs
< A hidden state gets updated after each iteration of the RNN
- Hidden state can then be decoded to produce outputs
+ Used primarily in sequence modeling
+ Allows us to process a variable number of constituents

« Variational Recurrent Neural Network (paper)

- Replaces the encoder/decoder step of the RNN with a VAE
+ In addition to constituents, can also input a list of high-level variables

COLUMBIA UNIVERSITY
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https://arxiv.org/pdf/1506.02216.pdf

Model Inputs

+ Inputs to the model consist of (jet-by-jet) CO; itl,;?(zts ngh]-)]“zevel
+ Constituent 4-vectors _ | PraNa®2 C2
- Up to first 10 constituents (sorted in py) R, %3 f123
- High-Level Variables (HLVs) ] P T B
- Jet Substructure \ l ’
- Preprocessing Strategy: VRNN
+ Cluster with anti-k,, R=1, trimmed l

+ Calculate Jet Substructure High-Level Variables (HLVs)
C2,D2, 14, Ty, T3, T, /Ty, T3/Ty, T3/T,, Splitl2, Split23
Added to and implemented in pyjet - python interface to fastjet

- Boost all jets to reference energy, mass
- Flat energy spectrum -> alleviates mass, pt correlation

- Save list of constituent 4-vectors, HLVs for each event
- Leading and Sub-Leading jets

Anomaly Score
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Training and Evaluation

- First, model is pre-trained on only constituent information
- Constituent information tends to get ignored when training on combined constituent+HLV from scratch
- Weights are saved when performance is at a maximum

- Then, HLV information is added, and training continues
< Overall, increases performance

« Loss Function: MSE + ADg;
- MSE = Mean-Squared Error between input and output constituent components
« Dy = KL Divergence from latent space prior to the learned latent space distribution
< A =constant, % in current tests

- Evaluation metric: Anomaly Score
+ Anomaly Score=1—e7"
© p=Dg,+min} d;;
- dy=min(k, k) (A¢F + Ang)
k, distance for R=1 jet

- Jet-Level to Event-Level:
- Determine Anomaly Score for leading, sub-leading jets
< Event Score = max(Anomaly Score 1, Anomaly Score 2)
- Training only on the two leading jets in each event
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Proof-of-Concept — R&D Dataset

L. Event Scores ROC
° 1.04
Split into 3 sets = Training
. ini ~ | Validation L
Training (~45k events) 0] o Signal g 0o/
- Validation (~45k events) . <
i g 1y 9 o6 L
- Signal (~10k events) : =
. 2 o el
- Contaminated (100k events) £ 101 S 04
- Sum of 3 split datasets 2
107 5 1 .~ — Training ROC (AUC = 0.876)
L. L. 7 el —— Validation ROC (AUC = 0.883)
- Two training prescriptions L L R 00k — - ~ —~ .
¢ Train on Training set ' sramatyscoe ' ' False Positive Rate
ROC
+ Train on Contaminated set Event Scores 10
. B Contaminated
+ True Anomaly Detection setup , Validation ool
107 [ Signal (Contaminated Weights) % '
a4
- Both scenarios show consistent £ 2 oo
performance E J
g 107y & o4
s Q
2 2
L . =
- Training on contaminated dataset 1 o ted ROC (ALC = 0.87)
produces longer tails in anomaly score o] —— Validation ROC (AUC = 0.886)
0.0 0.2 0.4 0.6 0.8 1.0 0-00.0 0.’2 0.'4 0;6 0:8 1.0
Anomaly Score False Positive Rate
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R&D: Jet Mass vs Score

Signal_CW: Leading Jet Mass vs Event Score

0.‘2 014 016 0:8
Event Score

Signal_CW: Dijet Mass vs Event Score

0:2 0:4 0.‘6 O:ﬁ
Event Score

Contaminated: Leading Jet Mass vs Event Score

Contaminated: Dijet Mass vs Event Score

-‘ : - '- )
!_..
-
O.VH 0.‘2 0.4 0.‘6 028
Event Score
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- Signal populates region of
higher Anomaly Score

- Signal dijet peak also correlated
in contaminated set

- Dijet computed as sum of
leading, sub-leading jets
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R&D: SUbStructure Variables VS Score Lo Signal_CW: Leading Jet Tau21 vs Leading Jet Score

- Anomaly score correlates with signal-
indicating substructure variables

- Example: 7, /14

« Low t,/7, -> more two-prong like

T T T
0.4 0.6 0.8
Anomaly Score

Contaminated: Leading Jet Tau21 vs Leading Jet Score

« Correlation still present in
contaminated dataset

T T T T
0.2 0.4 0.6 0.8
Anomaly Score
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Black Box Analyses

+ Procedure
+ Train on each dataset (Background, Black Box

1'2'3) Event Scores
- Study the dijet mass in bins of event score m= BlackBox1

acceptance 101 4 BlackBox2
m BlackBox3

"773 Background

- Idea: 10° 5

- Rely on acceptance due to unique network
weights for each dataset

- Datasets with signal contamination will contain
high S/B in the same acceptance bin w.r.t. pure-
background 10-7

. Searching for M;; type resonance in high anomaly
score regions 107

- Can use lower score, higher acceptance bins for

background estimation 0.0 0.2 0.4 0.6 0.8 10
+ Acts as background-enriched control region Anomaly Score

1071 5

10—2 .

Normalized Entries
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Example - Black Box 1

BlackBox1 Event Score Cuts

B BlackBox1 Score

i ]

i 1

. . - i 1
- Cutin exclusive bins of anomaly score acceptance wy Qi
i 1

1, 1,, 1,, 1 1 1 TR

© 2%,1%,5 %, %, %, —%, =%, =% w0y W
! '2774 7787716 7732 "7 64 8 R
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1073 4

1074 4
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Anomaly Score
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Example - Black Box 1

BlackBox1 Event Score Cuts

B BlackBox1 Score

i ]

i 1

. . - i 1

+ Cutin exclusive bins of anomaly score acceptance wy Qi
i 1

i 1

. 2%,1%,—%,—%,—%, %, S %0 % L O R

£ T

- Plot M | |
é 1072 § ) i

g |

1073 4

1074 4

0.0 0.2 0.4 0.6 0.8 1.0
Anomaly Score

BlackBox1
L —— 0.5-0.25% eff
—— 0.25-0.125% eff
—— 0.125-0.0625% eff
10— —— 0.0625-0.0313% eff
10'2:—
g0 b bl A B A
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
my, [Ge'
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Example - Black Box 1

+ Cutin exclusive bins of anomaly score acceptance
< 2%, 1%,—%,—%,—%, %, S %0 %

- Plot MII

- Compare to background-only sample/background-enriched
control region

Normalized Entries

10! 4

10° 4

107! 5

102 4

1073 4

1074 4

BlackBox1 Event Score Cuts

| | B BlackBox1 Score

0.2 0.4 0.6 0.8 1.0
Anomaly Score

BlackBox1 Background
r —— 0.50.25%eff C —— 05-0.25%eff
—— 0.25-0.125% eff —— 0.25-0.125% eff
—— 0.125-0.0625% eff —— 0.125-0.0625% eff
10— —— 0.0625-0.0313% eff 10 —— 0.0625-0.0313% eff
107 102
108 Ll L L1 Ll Nl 10-3H||I“.H“ln..luulnu FTH N
0 1000 2000 3000 4000 5000 6000 7000 8000 9000[ 10]0 ) 1000 2000 3000 4000 5000 6000 7000 8000 900(%(;10000
my, [GeV] my, [Ge'
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Example - Black Box 1

BlackBox1 Event Score Cuts

B BlackBox1 Score

i ]

i 1

. . - i 1

- Cutin exclusive bins of anomaly score acceptance wy Qi
i 1

1, 1,, 1,, 1 1 1 THE

© 2%, 1%, 5%, %, 5 %, 7 Yo, 5; %, o % oy W

2 (A 1

© PlOt MH E 1071 4 § i E
3 b

- Compare to background-only sample/background-enriched ERTE L |
g |

control region

1073 4

- Fitdistribution with ad-hoc “dijet” function to determine p-value
< py(1—x)P2xPs 1073

0.0 0.2 0.4 0.6 0.8 1.0
Anomaly Score

BlackBox1 Background
C 00 = P, +P, x In(1-x) +p, x Infx)
r —— 0.5025%eff C —— 0.5025%eff B ) =e
—— 0.25-0.125% eff L —— 0.25-0.125% eff o
—— 0.125-0.0625% eff —— 0.125-0.0625% eff E
10— —— 0.0625-0.0313% eff 10 ——— 0.0625-0.0313% eff r
: i 10 —
r - - p-value = 1.32 x 107
107% 107 , 1 \ L ! .
E E 0 3500 4000 4500 5000 5500 6000 6500 7000 7500 80(
C C m,, [GeV]
L K T T
B =1 odln UVJLI N
r - i ol T 1 P S
o Tnallnq sl AL L1 o 0
o b b b L b L L JYye) MU W PN N A I Wil N VIR U AL
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Example - Black Box 1

BlackBox1 Event Score Cuts

B BlackBox1 Score

i ]

i 1

. . - i 1

- Cutin exclusive bins of anomaly score acceptance wy Qi
i 1

1,, 1,, 1,, 1 1 1 Hido

© 2%, 1%, 5%, %, 5 %, 7 Yo, 5; %, o % SN G
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< 1 1 1

© PlOt MH g 107! E E
- Compare to background-only sample/background-enriched ERTE L |
g |

control region

1073 4

- Fitdistribution with ad-hoc “dijet” function to determine p-value

- 107 4
. pl (1 —_ x)pr pP3
R TR : ; s ; : ; 0.0 0.2 0.4 0.6 0.8 10
- Fit distribution with dijet+gaussian to determine mass+width of Aomaly Score
resonance
BlackBox1 Background
C P, +P, x In(1-x) +p, x Infx) C P, +P, x In(1-x) +p, x In(x)
r ——05-0.25%eff r ——05-025%eff L foy=e L e
—— 0.25:0.125% eff —— 0.25:0.125% eff ol vl +p xe” P
—— 0.1250.0625% eff —— 0.1250.0625% eff e E
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E E 10— 10

I I - p-value = 1.32 x 107 ] m =5441.04 = 97.34 GeV
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Black Box 1: Substructure vs Anomaly Score

1o Background_DrCut: Leading Jet Tau21 vs Leading Jet Score

0.4 0:6 0:8
Anomaly Score

1o BlackBox1_DrCut: Leading Jet Tau21 vs Leading Jet Score

0.8
TZ 0.6
Tl 0.4

0.2

0.0

o Background_DrCut: Leading Jet Tau32 vs Leading Jet Score

0.4 0:6 0:8
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T2 04
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Anomaly Score
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- Black Box 1 anomaly
score correlated with
low 7,/t; and high 7, /7,

- Consistent with two-
pronged jet substructure
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Results - Black Box 1

- Signal visible with mass 5441 * 97 GeV

+ Decreasing acceptance -> Higher S/B -> Convergence on signal peak
+ Physics description: A->BC->]]

+ New heavy resonance to two new particles, decaying to (boosted) qq

. BlackBox1 Background
BB1_BG_Dijet M, Acceptance [0.0003125, 0.00015625]
s BB1 L —— 0.5-0.25% eff N —— 0.5-0.25% eff
- 3 8G —— 0.25-0.125% eff L —— 0.25-0.125% eff
—— 0.125-0.0625% eff —— 0.125-0.0625% eff
10 —— 0.0625-0.0313% eff 10 —— 0.0625-0.0313% eff
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Results - Black Box 2

Evidence of signal at ~4500GeV

Much less prevalent than Black Box 1
- Difficult to fit background + signal bump
Smoothly falling M;; background sculpted by event score cut

BlackBox2
BB2_BG_Dijet M, Acceptance [0.0003125, 0.00015625]
o BB2 C —— 0.5-0.25% eff
[ BG N —— 0.25-0.125% eff
—— 0.125-0.0625% eff
10— ——— 0.0625-0.0313% eff
N
£
&
=
& 1074
g
5 1072 =
2
1 10—3..HI... I NS NN R | ool PN
0 2000 4000 6000 8000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Dijet Mass my, [GeV]
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1078 Lo

Background
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Results - Black Box 3

- No clear signal visible

- Potential reasons
* Not present
+ Mass ~3TeV
- Signal we're not sensitive to

1

BB3_BG_Dijet M, Acceptance [0.0003125, 0.00015625]
e BB3
3 BG
107!
o
£
&
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ﬁ 1074 4
g
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z
10°°
0 4000 6000 8000 10000
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Conclusion

+ Our VRNN model provides a very promising way of performing jet-level anomaly detection

- What we learned
+ Training on contaminated dataset allows for signal sensitivity
+ Built full analysis workflow for future studies
Added substructure variables to pyjet
 Definitions signal regions using Anomaly Score
- First application of this model to toy analysis

- Future studies

- Understand Anomaly Score behavior better
Undesired correlations? (Background mass sculpting)
- Background estimation
Defining control regions
+ Jet-level vs. event-level Anomaly Score
- Benchmark performance in well-defined signals

+ Thank you to the organizers of ML4]Jets!
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VRNN Cell + High-Level Variables 21

s
— 1y @C‘-’ X(t)

(9
Q¥ R
e | ¢ ¢,, ¢, - Feature Extractors
HLV : h(t-1) - Previous Hidden State
> & h(t) - Output Hidden State
X(t) - Input Constituent
y(t) - Output Constituent

> HLY| HLV - High-Level Variables
Loss: ADy, + MSE

v

COLUMBIA UNIVERSITY
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Jet Pre-Processing

- Mostly follows this paper
- prCut: 150GeV

+ Rescale to 50GeV mass: p# = %p” Loo Processed Jet
- Boostto 100GeV energy: p* - AvpY é:z
- Define new coordinates: 0.75 1 Radius ~ p;
- &, alongjet axis !
&, pointing to hardest constituent 0507
+ &5 pointing to second hardest constituent osd @
< Hardest constituent will have e; = 0 ’ !
+ Second hardest constituent will have e3 > 0 o 000 _: _____________________________ és-
- Define new pr,7n, ¢ ;
- pralongé; ~0.25 :
© 1n,¢asAn, AP wrté;
- Remove constituents with AR = \/n2 + ¢% > 1 —0.501
- Remove constituents with py fraction < 1% 075 - § ° .
- Normalize pr .
Pri -1.00 . . . 5 : . ;
o Pri7 %P1 -1.00 -0.75 -0.50 -0.25 000 025 050 075 100
n

- Save processed pr, 7, ¢ for each constituent

Glp COLUMBIA UNIVERSITY Alan Kahn January 16, 2020
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https://arxiv.org/pdf/1903.02032.pdf

Estimating Number of Signal Events

 Using anomaly score cut value from Black Box...
- Cut on both Black Box and Background

- Compare stats

- Difference in stats -> number of signal events
- Divide by signal efficiency

- Determined by study on labeled dataset

- Result is a (conservative) upper limit on the
number of signal events

- Results:
- Black Box 1: 86270
- Black Box 2: 11926
- Black Box 3: 7455

@ COLUMBIA UNIVERSITY Alan Kahn
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Normalized Entries

10-4 4

BB1_BG_Dijet M, Acceptance [0.0003125, 0.00015625]

o

2000

4000 6000
Dijet Mass

M BB1
[ BG

8000 10000

Signal Efficiency

ignal (Contaminated Weights)

Ky
a2

Anomaly Score
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Background dijet fit

- p_+p, xIn(1-x) +p, x In(x)
f(x) = e o 1 2

p-value = 0.307

T IIIIII|

3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000
my, [GeV]

5000 5500 6000 6500 7000 _ 7500 8000
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Approach

Input Dataset

- Preprocess data
* Cluster with anti-k,, R=1

- Calculate Jet Substructure
High-Level Variables (HLVs)

« C2,D2, 1, 7Ty T3, Ty /Ty, T3/Ty, T3/ Ty
Split12, Split23

- Save list of constituent 4-

vectors, HLVs for each event Clustering
* Leading and Sub-Leading jets i i )
r jet
l— or each je —l
Constituents JSS Variables

GLQ COLUMBIA UNIVERSITY Alan Kahn January 16, 2020
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Training: Leading Jet Mass vs Event Score Training: Dijet pT vs Event Score

0.1 0.2 0.3 0.4 0.5 0.6

3500

2500

2000

1500

0.5 0.6
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Motivation

Model Independent signal jet identification
“Anti-QCD Tagging”
Applicable to: %
+ General searches
Analyses supported by multiple physics models
Unpredicted new signals

/ Dataset N

K high % low % /

Unsupervised training ‘ Y J
No labels ¢
Ability to train on data Jet-Level Anomaly Detection
Anomaly Detection Anomaly Score

Discovering elements within a dataset which are produced by a
different, unusual mechanism

A sample of jets with loose cuts will be comprised of mostly %

light-jet QCD, with signal (t, W/Z, b, BSM, etc..) acting as some
small contamination \

~

ML Architecture: Variational Recurrent Neural Network (VRNN)

@ COLUMBIA UNIVERSITY Alan Kahn January 16, 2020
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Variational Autoencoders (VAEs)

- Observed data x is produced by a random latent variable z

- Variational encoders perform Bayesian Inference to
approximate the posterior distribution of z ¢ . «?
Encoder: q(z|x) Approximate Posterior
Decoder: p(x|z) Data Reconstruction .

- - 2 ° +

Standard Autoencoder Variational Autoencoder
(dircct encoding coordinatcs) (pand o initializc a probability distribution)

- How: Maximizing the Evidence Lower Bound
© L= E, [logp(x12)] — Dk, (4Z0)|Ip(2))

Reconstruction Accuracy  Kullback-Leibler Divergence
(Mean-Squared-Error) From (choosable) prior
to approximate posterior

+ Choice of Prior:
+ N(0,1) - Unit Gaussian centered at the origin

Source

+ Anomalous data has both higher KL-Divergence and
poorer reconstruction compared to normal data

COLUMBIA UNIVERSITY
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https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf

2
Example: MNIST

« MNIST - Database of 70,000 images of hand-
drawn digits (28x28 pixels)

Num: 0

Num: 1 Num: 2 Num: 3 Num: 4

N EIEIE]

um: um: Num: Num: 8 Num: 9 10
-~ ~
8
MNIST Examples 6
. . PR 4 o
+ Autoencoder trained by minimizing the mean-
squared-error between the input/output pixel ?
values !
-2
- Loss Function (MSE): L(xz Z |z — i
-4
-6
S o :‘ e® o e (0ol
+ Result: Different digits are represented by 8 O . e
= . o ° °
distant vectors in the latent space 10 °* . ©6e7
Features have been realized, and separated in the latent space 12 8¢9
Did not explicitly tell the autoencoder to do this -8 -6 -4 -2 0 2 4 6

Representations of classified MNIST digits in a 2-D latent space. Source

COLUMBIA UNIVERSITY
dﬂ IN THE CITY OF NEW YORK Alan Kahn ]anuary 16,2020


https://gertjanvandenburg.com/blog/autoencoder/

Previous studies at LHC (2): https://arxivorg/pdf/1903.02032.pdf

A robust anomaly finder based on autoencoder

Tuhin S. Roy” and Aravind H. Vijay"

“Department of Theoretical Physics, Tata Institute of Fundamental Research, Mumbai 00005,
India

b Department of High Energy Physics, Tata Institute of Fundamental Research, Mumbai {00005,

India

E-mail: tuhin@theory.tifr.res.in, aravind.vijay@tifr.res.in

ABSTRACT: We propose a robust method to identify anomalous jets by vetoing QCD jets.
The robustness of this method ensures that the distribution of the discriminating variable,
which allows us to veto QCD-jets. remain rather unaffected even if QCD-jets from different
m/pr bins are used as control samples. This suggest that using our method one can look
for anomalous jets in high m/pr bins, by simply training on jets from low m/pr bins,
where the data is surplus and pure in background. The robustness follows from coupling a
simple fully connected autoencoder to a novel way of preprocess jets. We use momentum
rescaling followed by a Lorentz boost to find the frame of reference where any given jet
is characterized by predetermined mass and energy. In this frame we generate the jet
image via constructing a set of arthonormal basis vector using the Gram-Schmidt method
to span the plane transverse to the jet axis. Due to our preprocessing, the autoencoder
loss function does not depend on the initial jet mass, momentum. or orientation while
still offering kabl fi When bined only with the jet mass, our method

performs equally well with state-of-the-art top taggers, which uses a large amount of physics
information associated with top decays.

s < 100 GV

100 GeV < my < 200 GeV

< 30 GeV 3

.=

Normalized Distribution
Nornalized Di

H

e
"
i+

.

EY

E ™

E

Fo

3

T s L
Autoencoder Loss (€)

Autoencoder Loss (¢)

Figure 5. The effect of mass cuts on the autoencoder response (for QCD jets) using our method
(LEFT) and using dense autoencoder from Ref. [31] (RIGHT)

Gb COLUMBIA UNIVERSITY
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Input: Softmax Jet images

30

- Jets boosted to predefined E,, m,, image made of pts in transverse jet plane

Architecture: Fully-Connected Layers

Loss function used: L2 Norm ¢

Main feature: Robustness

- Softmax jet images produce a loss function which doesn’t vary with jet mass
- Can train on low p; and look for anomalous jets in high p;

Alan Kahn

S (k-1 )?

1

January 16, 2020



https://arxiv.org/pdf/1903.02032.pdf

Variational Autoencoders in Practice

- Now, express each latent vector as a distribution in the latent space

-z - N'(u,6) - Multivariate Gaussian w/ Diagonal Covariance

- Sample from the latent distribution using the reparameterization trick

© Z=pu+ o€, where €e = N (0, 1) is a multivariate unit Gaussian . .o

« The latent distribution is the approximate posterior q(z|x)
Approximating the true posterior p(z|x) ‘ -

Standard Autoencoder Variational Autoencoder
(direct encoding coordinates) (pand o initialize a probability distribution)

+ The conditional distribution p(x|z) can be inferred from the
reconstruction accuracy

« For the prior p(z), assume a unit Gaussian centered at the origin
- p(2) = N(0,1)
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https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf
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Bayesian Inference in Variational Autoencoders

- p(x) = [p(2)p(x|z)dz - Intractable
« Approach: Investigate log likelihood of x
- logp(x) = E,[logp(x)]

_ p(X|Z)p(z)

= E [log p(zlx)

E [0 2X120@ aClx)
[O pzlx)  q(zlx)

] Bayes Theorem

2| Multiply by 2

_ a(z|x) a(z|x)
= E;[logp(x|)] ~ E; |log® 2 2|+ E, [log 2

Kullback-Leibler Divergence

D (400 Ip()) = f ey log("E ;)d

L a

“The KL divergence is the measure of inefficiency in
using the probability distribution Q to approximate
the true probability distribution P.” Source

logp(x) = E,[logp(x|z)] — D1, (q(z]|x)||p(2))+ PrratetHpz1%)- KL Divergence 2 0, so remove this

Reconstruction Accuracy

o]

KL Divergence of approximate
posterior from gaussian prior

Gb COLUMBIA UNIVERSITY Alan Kahn

IN THE CITY OF NEW YORK

Intractable,
since p(z|x) is
intractable

term and define a lower bound on
the log likelihood
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https://towardsdatascience.com/demystifying-kl-divergence-7ebe4317ee68

Bayesian Inference in Variational Autoencoders

- Variational lower bound on the data log-likelihood

- logp(x) = L =E, [logp(x|z)] — Dkr(q(z]|X)||p(2)) +Prlatzbotiplzl)
- Goal: Maximize it!

* Dg(q(z]x)||p(z]x)) will approach 0, i.e. g (z|x)~p(z|x)

+ Performed by using —£ as the [oss function of the autoencoder

+ Treat first term via maximum likelihood estimation:

mn o 5
Zlogp(y(’) | 0)

Equivalent to minimizing
> mean-squared-error between

v
” input and output

=—mlogo——log2ﬂ' Z”Z/T

deeplear book.org

+ Second term has a nice closed-form solution when q(z|x) and p(z) are Gaussian!

—Drr((9(2)lIpe(2)) = / q0(2) (log pe(2) — log go(2)) dz
1
2

= (1j)* = (0)%)
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