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Intro
• Model: Variational Recurrent	Neural	Network

• Sequence-modeling	architecture
• Use case:	Jet-Level	Anomaly	Detection

• Provides	one	Anomaly	Score per	jet	in	the	training	set

• Discussion
• Model Details
• Approach	to	this challenge

• Data	processing/evaluation
• Results
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Variational	Recurrent	Neural	Network	(VRNN)
• Based	on	a	Recurrent	Neural	Network (RNN)

• Architecture	which	allows	for	variable	amount	of	inputs
• A	hidden	state	gets	updated	after	each	iteration	of	the	RNN
• Hidden	state	can	then	be	decoded	to	produce	outputs
• Used	primarily	in	sequence	modeling
• Allows	us	to	process	a	variable	number	of	constituents

• Variational	Recurrent	Neural	Network	(paper)
• Replaces	the	encoder/decoder	step	of	the	RNN	with	a	VAE
• In	addition	to	constituents,	can	also	input	a	list	of	high-level	variables
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https://arxiv.org/pdf/1506.02216.pdf


Model	Inputs
• Inputs	to	the	model	consist	of	(jet-by-jet)

• Constituent	4-vectors
• Up	to	first	10	constituents	(sorted	in	pT)

• High-Level	Variables	(HLVs)
• Jet	Substructure

• Preprocessing	Strategy:
• Cluster	with	anti-kt ,	R=1,	trimmed
• Calculate		Jet	Substructure	High-Level	Variables	(HLVs)

• C2,	D2,	!1,	!2,	!3,	!2/!1,	!3/!1,	!3/!2,	Split12,	Split23
• Added to and implemented	in	pyjet – python	interface	to	fastjet

• Boost	all	jets	to	reference	energy,	mass
• Flat	energy	spectrum	->	alleviates	mass,	pt correlation

• Save	list	of	constituent	4-vectors,	HLVs	for	each	event
• Leading	and	Sub-Leading	jets
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Training	and	Evaluation
• First,	model	is	pre-trained on	only	constituent	information

• Constituent	information	tends	to	get	ignored	when	training	on	combined	constituent+HLV from	scratch
• Weights	are	saved	when	performance	is	at	a	maximum

• Then,	HLV	information	is	added,	and	training	continues
• Overall,	increases	performance

• Loss	Function:	!"# + %&'(
• MSE	=	Mean-Squared	Error	between	input	and	output	constituent	components
• DKL =	KL	Divergence	from	latent	space	prior	to	the	learned	latent	space	distribution
• % =	constant,	¼	in	current	tests

• Evaluation	metric:	Anomaly	Score
• Anomaly	Score	=	1 − +,-
• . = &'( + min∑456
• 456 =min(895: , 896: )(∆>56: + ∆?56: )

• kt distance	for	R=1	jet

• Jet-Level	to	Event-Level:
• Determine	Anomaly	Score for	leading,	sub-leading	jets
• Event	Score =	max(Anomaly	Score	1,	Anomaly	Score	2)
• Training	only	on	the	two	leading	jets	in	each	event
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Proof-of-Concept	–R&D	Dataset
• Split	into	3	sets

• Training (~45k events)
• Validation	(~45k	events)
• Signal (~10k	events)
• Contaminated (100k events)

• Sum	of	3	split	datasets

• Two	training	prescriptions
• Train on Training set
• Train on Contaminated set

• True Anomaly Detection setup

• Both	scenarios	show	consistent	
performance

• Training	on	contaminated	dataset	
produces	longer	tails	in	anomaly	score
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R&D:	Jet	Mass	vs	Score

• Signal	populates	region	of	
higher	Anomaly	Score

• Signal dijet peak also correlated
in contaminated	set
• Dijet	computed	as	sum	of	
leading,	sub-leading	jets
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R&D:	Substructure	Variables	vs	Score

• Anomaly score correlates with signal-
indicating substructure variables
• Example: !2/!1
• Low !2/!1	->	more	two-prong	like

• Correlation still present in
contaminated dataset
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Black	Box	Analyses
• Procedure

• Train	on	each	dataset	(Background,	Black	Box	
1,2,3)

• Study the	dijet mass	in	bins	of	event	score	
acceptance

• Idea:
• Rely	on	acceptance	due	to	unique	network	
weights	for	each	dataset

• Datasets	with	signal	contamination	will	contain	
high	S/B	in	the	same	acceptance	bin	w.r.t.	pure-
background
• Searching for MJJ	type	resonance	in	high	anomaly	
score	regions

• Can	use	lower	score,	higher	acceptance	bins	for	
background	estimation
• Acts as background-enriched	control	region
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Example	–Black	Box	1
• Cut	in	exclusive	bins	of	anomaly	score	acceptance

• 2%, 1%, %&%,
%
'%,

%
(%,

%
%)%,

%
*&%,

%
)'%
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Example	–Black	Box	1
• Cut	in	exclusive	bins	of	anomaly	score	acceptance

• 2%, 1%, %&%,
%
'%,

%
(%,

%
%)%,

%
*&%,

%
)'%

• Plot MJJ
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Example	–Black	Box	1
• Cut	in	exclusive	bins	of	anomaly	score	acceptance

• 2%, 1%, %&%,
%
'%,

%
(%,

%
%)%,

%
*&%,

%
)'%

• Plot MJJ
• Compare	to	background-only	sample/background-enriched	
control	region
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Example	–Black	Box	1
• Cut	in	exclusive	bins	of	anomaly	score	acceptance

• 2%, 1%, %&%,
%
'%,

%
(%,

%
%)%,

%
*&%,

%
)'%

• Plot MJJ
• Compare	to	background-only	sample/background-enriched	
control	region

• Fit	distribution with	ad-hoc	“dijet”	function to determine	p-value
• +% 1 − - ./-0.1
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Example	–Black	Box	1
• Cut	in	exclusive	bins	of	anomaly	score	acceptance

• 2%, 1%, %&%,
%
'%,

%
(%,

%
%)%,

%
*&%,

%
)'%

• Plot MJJ
• Compare	to	background-only	sample/background-enriched	
control	region

• Fit	distribution with	ad-hoc	“dijet”	function to determine	p-value
• +% 1 − - ./-0.1

• Fit	distribution	with	dijet+gaussian to	determine	mass+width of	
resonance
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Black	Box	1:	Substructure	vs	Anomaly	Score
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• Black Box 1 anomaly
score correlated	with	
low	!2/!1	and	high	!3/!2

• Consistent	with	two-
pronged	jet	substructure	
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Results	–Black	Box	1

• Signal	visible	with	mass	5441	± 97	GeV

• Decreasing acceptance	->	Higher	S/B	->	Convergence on signal	peak

• Physics	description:	A->BC->JJ

• New	heavy	resonance	to	two	new	particles,	decaying	to	(boosted)	!"!
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Results	–Black	Box	2
• Evidence	of	signal	at	~4500GeV
• Much less prevalent than Black Box	1

• Difficult	to	fit	background	+	signal	bump
• Smoothly	falling	MJJ background	sculpted	by	event	score	cut
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Results	–Black	Box	3
• No	clear	signal	visible

• Potential reasons
• Not	present
• Mass ~3TeV
• Signal we’re	not	sensitive	to
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Conclusion
• Our VRNN model provides a	very	promising	way	of	performing	jet-level	anomaly	detection

• What we learned
• Training	on	contaminated	dataset	allows	for	signal	sensitivity
• Built	full analysis workflow for future studies

• Added	substructure	variables	to	pyjet
• Definitions	signal	regions	using	Anomaly	Score
• First	application	of	this	model	to	toy	analysis

• Future	studies
• Understand Anomaly	Score	behavior	better

• Undesired correlations?	(Background	mass	sculpting)
• Background estimation

• Defining control	regions
• Jet-level	vs. event-level	Anomaly	Score
• Benchmark performance in well-defined	signals

• Thank	you	to	the	organizers	of	ML4Jets!
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BACKUP
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Loss:	$DKL +	MSE
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h(t)	– Output	Hidden	State
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Jet	Pre-Processing
• Mostly	follows	this	paper
• pT Cut:	150GeV
• Rescale	to	50GeV	mass:	!" → $%&'(

) !"
• Boost	to	100GeV	energy:	!" → Λ+"!+
• Define	new	coordinates:

• -̂. along	jet	axis
• -̂/ pointing	to	hardest	constituent
• -̂0 pointing	to	second	hardest	constituent

• Hardest	constituent	will	have	-0 = 0
• Second	hardest	constituent	will	have	-0 > 0

• Define	new	!4, 6, 7
• !4 along	-̂.
• 6, 7 as	∆6, ∆7 wrt	-̂.

• Remove	constituents	with	∆9 = 6/ + 7/ > 1
• Remove	constituents	with	!4 fraction	<	1%
• Normalize	!4

• !4< → =>?
∑A =>A

• Save	processed	!4, 6, 7 for	each	constituent
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https://arxiv.org/pdf/1903.02032.pdf


Estimating	Number	of	Signal	Events
• Using anomaly score cut value from Black Box…

• Cut on both Black Box	and	Background
• Compare stats

• Difference in stats	->	number	of	signal	events
• Divide by signal efficiency

• Determined	by	study	on	labeled	dataset
• Result is a (conservative) upper limit on the
number of	signal	events

• Results:
• Black	Box	1:	86270
• Black	Box	2:	11926
• Black	Box	3:	7455
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Background	dijet fit
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Approach
• Preprocess	data
• Cluster with anti-kt ,	R=1
• Calculate Jet	Substructure	
High-Level Variables	(HLVs)
• C2, D2,	!1, !2,	!3,	!2/!1, !3/!1, !3/!2,	
Split12,	Split23

• Save	list	of	constituent	4-
vectors,	HLVs	for	each	event
• Leading and Sub-Leading	jets
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Motivation
• Model	Independent	signal	jet	identification

• “Anti-QCD	Tagging”
• Applicable	to:

• General	searches
• Analyses	supported	by	multiple	physics	models
• Unpredicted	new	signals

• Unsupervised	training
• No	labels
• Ability	to	train	on	data

• Anomaly	Detection
• Discovering	elements	within	a	dataset	which	are	produced	by	a	
different,	unusual	mechanism

• A	sample	of	jets	with	loose	cuts	will	be	comprised	of	mostly	
light-jet	QCD,	with	signal	(t,	W/Z,	b,	BSM,	etc..)	acting	as	some	
small	contamination

• ML	Architecture:	Variational Recurrent	Neural	Network	(VRNN)
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Variational	Autoencoders	(VAEs)
• Observed	data	x is	produced	by	a	random	latent	variable	z

• Variational	encoders	perform	Bayesian	Inference	to	

approximate	the	posterior	distribution	of	z
• Encoder:	! " # Approximate	Posterior
• Decoder:	$ # " Data	Reconstruction

• How:	Maximizing	the	Evidence	Lower	Bound

• ℒ = '( log $(#|") − 012 ! " # ||$(")

• Choice	of	Prior:	

• 3(0,1) – Unit	Gaussian	centered	at	the	origin

• Anomalous	data	has	both	higher	KL-Divergence and	
poorer	reconstruction	compared	to	normal	data
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Reconstruction	Accuracy
(Mean-Squared-Error)

Kullback-Leibler Divergence
From	(choosable)	prior
to	approximate	posterior

Source

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf


Example:	MNIST

• MNIST	– Database	of	70,000	images	of	hand-

drawn	digits	(28x28	pixels)

• Autoencoder	trained	by	minimizing	the	mean-
squared-error between	the	input/output	pixel	
values

• Loss	Function	(MSE):

• Result:	Different	digits	are	represented	by	

distant	vectors	in	the	latent	space

• Features have	been	realized,	and	separated	in	the	latent	space
• Did	not	explicitly	tell	the	autoencoder	to	do	this
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Representations	of	classified	MNIST	digits	in	a	2-D	latent	space.	Source

MNIST	Examples

https://gertjanvandenburg.com/blog/autoencoder/


Previous	studies	at	LHC	(2):https://arxiv.org/pdf/1903.02032.pdf
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• Input:	Softmax Jet	images
• Jets	boosted	to	predefined	E0,	m0,	image	made	of	pts	in	transverse	jet	plane

• Architecture:	Fully-Connected	Layers

• Loss	function	used:	L2	Norm

• Main	feature:	Robustness
• Softmax jet	images	produce	a	loss	function	which	doesn’t	vary	with	jet	mass
• Can	train	on	low	pT and	look	for	anomalous	jets	in	high	pT

https://arxiv.org/pdf/1903.02032.pdf


Variational	Autoencoders	in	Practice
• Now,	express	each	latent	vector	as	a	distribution in	the	latent	space

• ! → #(%, ') – Multivariate	Gaussian	w/	Diagonal	Covariance

• Sample	from	the	latent	distribution	using	the	reparameterization	trick
• )! = % + ',,	where , = #(-, .) is	a	multivariate	unit	Gaussian

• The	latent	distribution	is	the	approximate	posterior /(0|2)
• Approximating	the	true	posterior 3(0|2)

• The	conditional	distribution	3 2 0 can	be	inferred	from	the	
reconstruction	accuracy

• For	the	prior p(z),	assume	a	unit	Gaussian	centered	at	the	origin
• 3 0 = #(0, 1)
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Source

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf


Bayesian	Inference	in	Variational	Autoencoders
• ! " = ∫! % ! " % &% - Intractable
• Approach:	Investigate	log	likelihood	of	"
• log ! " = *+ log !(")

= *+ log . " % .(+)
.(+|0)

= *+ log . " % .(+)
.(+|0)

1(+|0)
1(+|0)

= *+ log !("|%) − *+ log 1(+|0).(+) + *+ log 1(+|0).(+|0)

log !(") = *+ log !("|%) − 345 6 % " ||!(%) +	345 6 % " ||!(%|")
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345(6(")||! " ) = 76 " log 6 "
! " &"

Reconstruction	Accuracy

KL	Divergence	of	approximate	
posterior	from	gaussian	prior

Intractable,	
since	p(z|x)	is	
intractable

Bayes	Theorem

Multiply	by	1(+|0)1(+|0)

Kullback-Leibler Divergence

“The KL divergence is the measure of inefficiency in 
using the probability distribution Q to approximate

the true probability distribution P.“ Source

KL	Divergence	≥	0,	so	remove	this	
term	and	define	a	lower	bound on	
the	log	likelihood

https://towardsdatascience.com/demystifying-kl-divergence-7ebe4317ee68


Bayesian	Inference	in	Variational	Autoencoders
• Variational	lower	bound on	the	data	log-likelihood

• log $(&) ≥ ℒ = +, log $(&|.) − 012 3 . & ||$(.) +	045 3 . & ||$(.|&)
• Goal:	Maximize	it!

• 012 3 . & ||$(.|&) will	approach	0,	i.e.	3 . & ~$(.|&)
• Performed	by	using	−ℒ as	the	loss	function of	the	autoencoder
• Treat	first	term	via	maximum	likelihood	estimation:

• Second	term	has	a	nice	closed-form	solution	when	q(z|x)	and	p(z)	are	Gaussian!
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deeplearningbook.org

Equivalent	to	minimizing	
mean-squared-error between	

input	and	output

Auto-Encoding	Variational	Bayes

http://www.deeplearningbook.org/
https://arxiv.org/pdf/1312.6114.pdf

