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Heavy-lon Collisions and the QGP
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» ALICE is optimized for such studies, measuring particles
produced in collisions of Pb — Pb ions at /sy = 2.76 and
5.02 TeV.
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Jets as a Probe of the QGP

» Partons which make
up jets are formed
early in the collision
before QGP
formation.

» Expected to lose
energy through
interactions with the
colored medium.

» Energy loss alters
fragmentation.

» We can use jets to probe the QGP!



Challenges of Reconstructing the Jet pr

51 E, [GeV] ATLAS

AA

» Reconstructing the jet pr is a challenging task in heavy-ion
collisions due to the large uncorrelated background.

Foka, Panagiota, Janik, Matgorzata. (2016). An overview of experimental results from ultra-relativistic heavy-ion
collisions at the CERN LHC: Hard probes. Reviews in Physics. 1. 10.1016/j.revip.2016.11.001.
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Area Based Background Subtraction

50/ E,_[GeV] ATLAS » ALICE standard is to

o] correct jets for the average
momentum density, p,
calculated on an
event-by-event basis.

PT,corr = PT,raw — PA

» Following this pedestal
subtraction, residual
fluctuations remain,

causing problems for low
Fluctuations ~ 20 GeV/c in R = 0.4, pr jets.
Central collisions— pA ~ 100 GeV/c

» Possible problem for
» Can we do better? HL-LHC!

Foka, Panagiota, Janik, Matgorzata. (2016). An overview of experimental results from ultra-relativistic heavy-ion
collisions at the CERN LHC: Hard probes. Reviews in Physics. 1. 10.1016/j.revip.2016.11.001.
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Machine Learning Based Background Estimator
» We use machine

learning to create a Je;Pr;»;:lei;ties ML
. . 1mnciue

data dr|ven mapp]ng constitucr%t ~ Corrected Jet Pr

that corrects for the properties)

background on a

jet-by-jet basis. » Exploit the difference of each

individual jet and the background
particles which overlay it.

» Aim is to reduce residual fluctuations,
allowing for a better determination of
the jet signal.

» Method can be applied to charged
jets or full jets (which contain charged
tracks and neutral clusters, measured

anti-kr jets with various resolution

parameters in the TPC and EMCal, respectively).

Haake, Rudiger, Loizides, Constantin. (2019). Machine-learning-based jet momentum reconstruction in heavy-ion
collisions. Physical Review C. 99. 10.1103/PhysRevC.99.064904.
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Process

Event > To crgat_e a suitable event
for training, we embed a pp
l detector level PYTHIA

event (truth) into a realistic
Extract Jet Parameters background.

/ \ » Two options for the

! i background
T -«
raining Testing 1. Pb—Pb min bias data

\ / (more realistic)

2. Simulated thermal
ML Estimator heavy-ion background
l (easier to vary)

» Both yield quantitatively

13 ”‘7
Do we get back to “truth™ similar results!
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ML Configurations

Regression task — predicting jet pt!

We are prioritizing a simple model!

Training is 10% of sample, testing 90%.

Implemented in scikit-learn. Default parameters used
unless otherwise specified.

vvyyy

. Shallow Neural Network
» Shallow, three-layer network with [100,100,50] nodes.
» ADAM optimizer, stochastic gradient descent algorithm.
» Nodes/neurons are activated by a ReLU activation function.
2. Linear Regression
» Normalization set to true by default.
3. Random Forest

» Ensemble of 30 Decision Trees.
» Maximum number of features set to 15.

—
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Input Parameter Selection

» Ask two questions before selecting a feature
1. How correlated is the feature with other features in the

model?
2. How important is the feature to the model’'s performance?

» lteratively remove unimportant or highly correlated features
(ex: Uncorrected Jet pr and area-based corrected jet pr).

» Simplified Input Parameters (charged jets): area-based
corrected jet pr, jet angularity, pr of 8 leading tracks,
number of constituents
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How do we evaluate the performance?

» When we evaluate the
performance of the ML based
estimator, we are looking at the
resolution.

— » The narrower the peak in dpr,

the better the resolution of the
background estimator.

5PT = pT,rec - pT,True

» Residuals answer the question: Are we getting back to the
true jet pp?

Hannah Bossi (Yale University) ML4Jets 2020 hannah.bossi@yale.edu



Model Performance (Charged Jets)
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» We see that ML methods show an increased performance
over the area-based method!

» Different ML methods demonstrate a comparable
performance, use neural network.
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Investigations of Fragmentation Dependence
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PhysRevC.99.064904.
» A small bias observed.
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Introduced by learning
from constituents.

Investigate by checking
model performance on two
samples of jets with
different fragmentation.

Extreme variation: Quark
vs. Gluon Jets

Use JEWEL to test a
fragmentation variation
similar to that in heavy-ion
collisions.
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Background Dependence

» We want to also look at the model dependence on the
background used in training.

» We can test the effect of varying the mean multiplicity of
the background using the toy model.

————
Thermal model mean mult.
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» Model is robust to variations in the background!
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Inclusive Charged Jet Spectra

o5

@ @

< T T
% [ PYTHIA + Pb-Pb5.02 TeV ] -10° i -509
& | Charged jets, anti,, hl<09-A ] Central (0-10%) Semi-Central (30-50%)
5 r ALICE Performance q
k] 20~ 0.10% central N = T RRRR' T T RRRRY
3 [ mML-based 1 2 4o+ ALICE Pb-Pb5.02TeV, 0-10% B
T [ ElArea-based E 8 - Charged jets, anti-kr, [ | < 0.9 - R El
€ 15[ 30-50% central B J&8 | MLestimator trained on PYTHIA
] [ 3 ML-based ] - R-02
[ 3 Area-based ] g ﬁm E E R= 84 El
r b 5 E ®R=06 4
10— - .
F ] SIRT= E!
[ ] 2 E El
r 1 S bl
S B 107 == E
C ! ] L i
0 0.2 04 0.6 "ng N . h S E
o Jet resolution parameter R & Nog uncertainty not shown
Lo [ ALICE Preliminary
| NN NS R FE NN EEEEE PR N
20 30 40 50 60 70 8 90 100
E1-324694 Pr onjet (GeVic)

» ML effectively reduces residual fluctuations, allowing us to
greatly extend measurements.
» R =0.6is now possible!



Nuclear Modification Factor
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ML-based correction provides opportunity to better understand
jet quenching effects!



Adding in Full Jets
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Use a different set of input
parameters, utilize neutral
constituent information as
well.

ML demonstrates a similar
improvement in full jets!!

Measurements in progress!
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Extension to full jets is
advantageous, shows a
greater alignment with the
theoretical definition of a
jet.
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Conclusions

» We introduce a novel method to reconstruct the jet pr on a
jet-by-jet basis using the properties of the jet and its
constituents using machine learning techniques.

» This method shows a significantly improved performance
over the area-based method.

» Allows for measurements to lower pr and larger R.
» Can also compare to jet measurements at RHIC, future
home of the EIC!!

» Full jet measurements in progress!

» Goal: Gain further information on parton energy loss in the
QGP.
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High Luminosity LHC

>

>
>
>

At the High Lumiosity LHC, the average number of pileup
interactions per bunch crossing will increase dramatically.
Max Luminosity Run II: ;. = 60

HL LHC: u ~ 140 — 200

Area-median techniques still correct for the average
background, but fluctuations are on the order of 10-15
GeV/e.

This will cause issues for the measurement of low pr jets!
Could institute a low pr cutoff, but many key

measurements at the LHC (such as double Higgs
production) rely on measurements to low pr!

G. SOYEZ (2019) Pileup mitigation at the LHC: A theorists view (arXiv:1801.09721[hep-ph])
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Nuclear Modification Factor, ML-Based Correction

» The nuclear modification factor, Raa, is a ratio of the
spectra in Pb—Pb collisions to the spectra expected if no
QGP were present.
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» ML-based correction allows for a greater understanding of
jet quenching effects!



Regression Target

» We have two possibilities for the regression target which
should represent the true jet pr.

1. pr of the Matched Detector Level Pythia Jet
» Advantage: Has physical meaning.
» Disadvantage: Adds another parameter, the matching
radius, to the ML.
2. Use the true pr fraction multiplied by the fully corrected jet
pPr-
» Advantage: No additional parameters.
» Disadvantage: Difficult to exactly measure PYTHIA
contribution to a hybrid cluster.

» Two regression targets yield similar results.
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Feature Sco

res

Hannah Bossi (Yale University)

Feature Score |Feature Score
Jet pr (no corr.) 0.1355 P'zlr, const. 0-0012
Jet mass 0.0007 | py cong 0-0039
Jet area 0.0005 p%’ const 00015
Jet pr (area-based corr.) 0.7876 p,:n consy 00011
LeSub 0.0004| py. .o, 0-0009
Radial moment 0.0005| p§ .oy 0-0009
Momentum dispersion 0.0007 p}’ const 0-0008
Number of constituents 0.0008 p,'}! cong 0-0007
Mean of const. pr 0.0585| p. ... 0.0006
Median of const. pr ~ 0.0023[p!® ~ 0.0007

ML4Jets 2020
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Jet Mass
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Jet mass (GeV/c?)
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Inclusive Charged Jet Spectra, Semi-Central
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Model Comparisons
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» Have to be careful with
direct theory comparisons,
ML algorithm is making a
different set of "cuts”.
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Comparison of Algorithms Used
1. Neural Network
» Utilize a series of nodes and layers, each with different
weighting functions.
» Each node carries a feature of the input data which is
connected to every other node.
» These nodes can either excite or inibit each other, allowing
for complex relations.
2. Linear Regression
» Creates a linear mapping between independent and
dependent variables.
> lteratively tries to find the best fitting line which minimizes
error.
» Can use a gradient descent algorithm to find the best fitting
line.
3. Random Forest
» Uses an ensemble of decision trees, taking the mean
prediction for the case of regression.
» Possible to retrieve Gini index weightings or to look at
individual decision trees — sheds light on the black box.



Hannah Bossi (Yale University)

Wy, ;-

i,
4

ML4Jets 2020

hannah.bossi@yale.edu

27



798cm




Hannah Bossi (Yale University)

ML4Jets 2020

hannah.bossi@yale.edu

29



