Machine Learning Based Jet $\ensuremath{p_{\rm T}}$ Reconstruction in heavy-ion collisions with ALICE

Hannah Bossi on behalf of the ALICE Collaboration

Yale University

ML4Jets 2020 1/17/2020 New York University

Hannah Bossi (Yale University)

ML4Jets 2020

Heavy-Ion Collisions and the QGP

Phase diagram of strongly interacting matter.

 At extremely high temperatures and pressures, QCD matter becomes deconfined in a state referred to as the Quark-Gluon Plasma (QGP).

 These extreme conditions are reproduced in heavy-ion collisions.

► ALICE is optimized for such studies, measuring particles produced in collisions of Pb – Pb ions at $\sqrt{s_{\rm NN}}$ = 2.76 and 5.02 TeV.

Jets as a Probe of the QGP

- Partons which make up jets are formed early in the collision before QGP formation.
- Expected to lose energy through interactions with the colored medium.
- Energy loss alters fragmentation.

► We can use jets to probe the QGP!

Challenges of Reconstructing the Jet $p_{\rm T}$

Reconstructing the jet p_T is a challenging task in heavy-ion collisions due to the large uncorrelated background.

Foka, Panagiota, Janik, Małgorzata. (2016). An overview of experimental results from ultra-relativistic heavy-ion collisions at the CERN LHC: Hard probes. Reviews in Physics. 1. 10.1016/j.revip.2016.11.001.

Area Based Background Subtraction

Fluctuations \sim 20 GeV/c in R = 0.4, Central collisions $\rightarrow \rho A \sim$ 100 GeV/c

ALICE standard is to correct jets for the average momentum density, ρ, calculated on an *event-by-event* basis.

 $p_{\mathrm{T,corr}} = p_{\mathrm{T,raw}} - \rho A$

- Following this pedestal subtraction, residual fluctuations remain, causing problems for low p_T jets.
- Possible problem for HL-LHC!

Can we do better?

Foka, Panagiota, Janik, Małgorzata. (2016). An overview of experimental results from ultra-relativistic heavy-ion collisions at the CERN LHC: Hard probes. Reviews in Physics. 1. 10.1016/j.revip.2016.11.001.

Machine Learning Based Background Estimator

We use machine learning to create a data driven mapping that corrects for the background on a jet-by-jet basis.

anti- $k_{\rm T}$ jets with various resolution parameters

- Exploit the difference of each individual jet and the background particles which overlay it.
- Aim is to reduce residual fluctuations, allowing for a better determination of the jet signal.
- Method can be applied to charged jets or full jets (which contain charged tracks and neutral clusters, measured in the TPC and EMCal, respectively).

Haake, Rüdiger, Loizides, Constantin. (2019). Machine-learning-based jet momentum reconstruction in heavy-ion collisions. Physical Review C. 99. 10.1103/PhysRevC.99.064904.

Process

- To create a suitable event for training, we embed a pp detector level PYTHIA event (truth) into a realistic background.
- Two options for the background
 - 1. Pb–Pb min bias data (more realistic)
 - 2. Simulated thermal heavy-ion background (easier to vary)
- Both yield quantitatively similar results!

ML Configurations

- Regression task \rightarrow predicting jet p_T !
- We are prioritizing a simple model!
- ► Training is 10% of sample, testing 90%.
- Implemented in scikit-learn. Default parameters used unless otherwise specified.
- 1. Shallow Neural Network
 - Shallow, three-layer network with [100,100,50] nodes.
 - ADAM optimizer, stochastic gradient descent algorithm.
 - Nodes/neurons are activated by a ReLU activation function.
- 2. Linear Regression
 - Normalization set to true by default.
- 3. Random Forest
 - Ensemble of 30 Decision Trees.
 - Maximum number of features set to 15.

Input Parameter Selection

Ask two questions before selecting a feature

- 1. How correlated is the feature with other features in the model?
- 2. How important is the feature to the model's performance?
- Iteratively remove unimportant or highly correlated features (ex: Uncorrected Jet p_T and area-based corrected jet p_T).
- Simplified Input Parameters (charged jets): area-based corrected jet p_T, jet angularity, p_T of 8 leading tracks, number of constituents

How do we evaluate the performance?

- When we evaluate the performance of the ML based estimator, we are looking at the resolution.
- The narrower the peak in δp_T, the better the resolution of the background estimator.

Residuals answer the question: Are we getting back to the true jet p_T?

Model Performance (Charged Jets)

- We see that ML methods show an increased performance over the area-based method!
- Different ML methods demonstrate a comparable performance, use neural network.

Investigations of Fragmentation Dependence

- Introduced by learning from constituents.
- Investigate by checking model performance on two samples of jets with different fragmentation.
- Extreme variation: Quark vs. Gluon Jets
- Use JEWEL to test a fragmentation variation similar to that in heavy-ion collisions.

A small bias observed.

Background Dependence

- We want to also look at the model dependence on the background used in training.
- We can test the effect of varying the mean multiplicity of the background using the toy model.

Model is robust to variations in the background!

ML4Jets 2020

Inclusive Charged Jet Spectra

 ML effectively reduces residual fluctuations, allowing us to greatly extend measurements.

R = 0.6 is now possible!

ML4Jets 2020

Nuclear Modification Factor

- ML agrees with area based results.
- Measurements over larger p_T ranges with smaller uncertainties.

ML-based correction provides opportunity to better understand jet quenching effects!

Adding in Full Jets

- Use a different set of input parameters, utilize neutral constituent information as well.
- ML demonstrates a similar improvement in full jets!!
- Measurements in progress!

Extension to full jets is advantageous, shows a greater alignment with the theoretical definition of a jet.

ML4Jets 2020

Conclusions

- We introduce a novel method to reconstruct the jet p_T on a jet-by-jet basis using the properties of the jet and its constituents using machine learning techniques.
- This method shows a significantly improved performance over the area-based method.
 - Allows for measurements to lower $p_{\rm T}$ and larger *R*.
 - Can also compare to jet measurements at RHIC, future home of the EIC!!
- Full jet measurements in progress!
- Goal: Gain further information on parton energy loss in the QGP.

Backup

High Luminosity LHC

- At the High Lumiosity LHC, the average number of pileup interactions per bunch crossing will increase dramatically.
- Max Luminosity Run II: $\mu = 60$
- ► HL LHC: *µ* ≈ 140 − 200
- Area-median techniques still correct for the average background, but fluctuations are on the order of 10-15 GeV/c.
- This will cause issues for the measurement of low p_T jets!
- Could institute a low p_T cutoff, but many key measurements at the LHC (such as double Higgs production) rely on measurements to low p_T!

G. SOYEZ (2019) Pileup mitigation at the LHC: A theorists view (arXiv:1801.09721[hep-ph])

Nuclear Modification Factor, ML-Based Correction

The nuclear modification factor, R_{AA}, is a ratio of the spectra in Pb–Pb collisions to the spectra expected if no QGP were present.

Central (0-10%)

Semi-Central (30-50%)

ML-based correction allows for a greater understanding of jet quenching effects!

ML4Jets 2020

Regression Target

- We have two possibilities for the regression target which should represent the true jet p_T.
- 1. $p_{\rm T}$ of the Matched Detector Level Pythia Jet
 - Advantage: Has physical meaning.
 - Disadvantage: Adds another parameter, the matching radius, to the ML.
- 2. Use the true $p_{\rm T}$ fraction multiplied by the fully corrected jet $p_{\rm T}$.
 - Advantage: No additional parameters.
 - Disadvantage: Difficult to exactly measure PYTHIA contribution to a hybrid cluster.
- Two regression targets yield similar results.

Feature Scores

Feature	Score	Feature	Score
Jet $p_{\rm T}$ (no corr.)	0.1355	$p_{\rm T, \ const}^1$	0.0012
Jet mass	0.0007	$p_{\rm T, \ const}^2$	0.0039
Jet area	0.0005	$p_{T, \text{ const}}^{3}$	0.0015
Jet $p_{\rm T}$ (area-based corr.)	0.7876	$p_{\rm T, const}^4$	0.0011
LeSub	0.0004	$p_{\rm T, const}^{5}$	0.0009
Radial moment	0.0005	$p_{\rm T, \ const}^{6}$	0.0009
Momentum dispersion	0.0007	$p_{\rm T, const}^{7}$	0.0008
Number of constituents	0.0008	$p_{\rm T, const}^8$	0.0007
Mean of const. $p_{\rm T}$	0.0585	$p_{T, const}^9$	0.0006
Median of const. $p_{\rm T}$	0.0023	$p_{\rm T, \ const}^{10}$	0.0007

Jet Mass

Inclusive Charged Jet Spectra, Semi-Central

Model Comparisons

 Have to be careful with direct theory comparisons, ML algorithm is making a different set of "cuts".

Comparison of Algorithms Used

- 1. Neural Network
 - Utilize a series of nodes and layers, each with different weighting functions.
 - Each node carries a feature of the input data which is connected to every other node.
 - These nodes can either excite or inibit each other, allowing for complex relations.
- 2. Linear Regression
 - Creates a linear mapping between independent and dependent variables.
 - Iteratively tries to find the best fitting line which minimizes error.
 - Can use a gradient descent algorithm to find the best fitting line.
- 3. Random Forest
 - Uses an ensemble of decision trees, taking the mean prediction for the case of regression.
 - Possible to retrieve Gini index weightings or to look at individual decision trees → sheds light on the black box.

