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Heavy-Ion Collisions and the QGP

Phase diagram of strongly interacting matter.

I At extremely high
temperatures and
pressures, QCD matter
becomes deconfined in a
state referred to as the
Quark-Gluon Plasma
(QGP).

I These extreme conditions
are reproduced in
heavy-ion collisions.

I ALICE is optimized for such studies, measuring particles
produced in collisions of Pb – Pb ions at

√
sNN = 2.76 and

5.02 TeV.
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Jets as a Probe of the QGP
I Partons which make

up jets are formed
early in the collision
before QGP
formation.

I Expected to lose
energy through
interactions with the
colored medium.

I Energy loss alters
fragmentation.

I We can use jets to probe the QGP!
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Challenges of Reconstructing the Jet pT

I Reconstructing the jet pT is a challenging task in heavy-ion
collisions due to the large uncorrelated background.

Foka, Panagiota, Janik, Małgorzata. (2016). An overview of experimental results from ultra-relativistic heavy-ion
collisions at the CERN LHC: Hard probes. Reviews in Physics. 1. 10.1016/j.revip.2016.11.001.
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Area Based Background Subtraction

Fluctuations ∼ 20 GeV/c in R = 0.4,
Central collisions→ ρA ∼ 100 GeV/c

I Can we do better?

I ALICE standard is to
correct jets for the average
momentum density, ρ,
calculated on an
event-by-event basis.
pT,corr = pT,raw − ρA

I Following this pedestal
subtraction, residual
fluctuations remain,
causing problems for low
pT jets.

I Possible problem for
HL-LHC!

Foka, Panagiota, Janik, Małgorzata. (2016). An overview of experimental results from ultra-relativistic heavy-ion
collisions at the CERN LHC: Hard probes. Reviews in Physics. 1. 10.1016/j.revip.2016.11.001.
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Machine Learning Based Background Estimator
I We use machine

learning to create a
data driven mapping
that corrects for the
background on a
jet-by-jet basis.

R

anti-kT jets with various resolution
parameters

I Exploit the difference of each
individual jet and the background
particles which overlay it.

I Aim is to reduce residual fluctuations,
allowing for a better determination of
the jet signal.

I Method can be applied to charged
jets or full jets (which contain charged
tracks and neutral clusters, measured
in the TPC and EMCal, respectively).

Haake, Rüdiger, Loizides, Constantin. (2019). Machine-learning-based jet momentum reconstruction in heavy-ion
collisions. Physical Review C. 99. 10.1103/PhysRevC.99.064904.
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Process

I To create a suitable event
for training, we embed a pp
detector level PYTHIA
event (truth) into a realistic
background.

I Two options for the
background

1. Pb–Pb min bias data
(more realistic)

2. Simulated thermal
heavy-ion background
(easier to vary)

I Both yield quantitatively
similar results!
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ML Configurations

I Regression task→ predicting jet pT !
I We are prioritizing a simple model!
I Training is 10% of sample, testing 90%.
I Implemented in scikit-learn. Default parameters used

unless otherwise specified.

1. Shallow Neural Network
I Shallow, three-layer network with [100,100,50] nodes.
I ADAM optimizer, stochastic gradient descent algorithm.
I Nodes/neurons are activated by a ReLU activation function.

2. Linear Regression
I Normalization set to true by default.

3. Random Forest
I Ensemble of 30 Decision Trees.
I Maximum number of features set to 15.
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Input Parameter Selection

I Ask two questions before selecting a feature
1. How correlated is the feature with other features in the

model?
2. How important is the feature to the model’s performance?

I Iteratively remove unimportant or highly correlated features
(ex: Uncorrected Jet pT and area-based corrected jet pT).

I Simplified Input Parameters (charged jets): area-based
corrected jet pT, jet angularity, pT of 8 leading tracks,
number of constituents
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How do we evaluate the performance?

I When we evaluate the
performance of the ML based
estimator, we are looking at the
resolution.

I The narrower the peak in δpT,
the better the resolution of the
background estimator.

I Residuals answer the question: Are we getting back to the
true jet pT?
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Model Performance (Charged Jets)

PhysRevC.99.064904.

I We see that ML methods show an increased performance
over the area-based method!

I Different ML methods demonstrate a comparable
performance, use neural network.
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Investigations of Fragmentation Dependence

PhysRevC.99.064904.

I Introduced by learning
from constituents.

I Investigate by checking
model performance on two
samples of jets with
different fragmentation.

I Extreme variation: Quark
vs. Gluon Jets

I Use JEWEL to test a
fragmentation variation
similar to that in heavy-ion
collisions.

I A small bias observed.

Hannah Bossi (Yale University) ML4Jets 2020 hannah.bossi@yale.edu 12



Background Dependence
I We want to also look at the model dependence on the

background used in training.
I We can test the effect of varying the mean multiplicity of

the background using the toy model.

PhysRevC.99.064904.

I Model is robust to variations in the background!
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Inclusive Charged Jet Spectra

ALI-PERF-324612

I ML effectively reduces residual fluctuations, allowing us to
greatly extend measurements.

I R = 0.6 is now possible!
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Nuclear Modification Factor

I ML agrees with area based
results.

I Measurements over larger pT

ranges with smaller uncertainties.

ML-based correction provides opportunity to better understand
jet quenching effects!
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Adding in Full Jets

I Use a different set of input
parameters, utilize neutral
constituent information as
well.

I ML demonstrates a similar
improvement in full jets!!

I Measurements in progress!

I Extension to full jets is
advantageous, shows a
greater alignment with the
theoretical definition of a
jet.

ALI-PERF-339976
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Conclusions

I We introduce a novel method to reconstruct the jet pT on a
jet-by-jet basis using the properties of the jet and its
constituents using machine learning techniques.

I This method shows a significantly improved performance
over the area-based method.
I Allows for measurements to lower pT and larger R.
I Can also compare to jet measurements at RHIC, future

home of the EIC!!
I Full jet measurements in progress!
I Goal: Gain further information on parton energy loss in the

QGP.
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Backup
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High Luminosity LHC

I At the High Lumiosity LHC, the average number of pileup
interactions per bunch crossing will increase dramatically.

I Max Luminosity Run II: µ = 60
I HL LHC: µ ≈ 140− 200
I Area-median techniques still correct for the average

background, but fluctuations are on the order of 10-15
GeV/c.

I This will cause issues for the measurement of low pT jets!
I Could institute a low pT cutoff, but many key

measurements at the LHC (such as double Higgs
production) rely on measurements to low pT!

G. SOYEZ (2019) Pileup mitigation at the LHC: A theorists view (arXiv:1801.09721[hep-ph])
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Nuclear Modification Factor, ML-Based Correction
I The nuclear modification factor, RAA, is a ratio of the

spectra in Pb–Pb collisions to the spectra expected if no
QGP were present.

Central (0-10%) Semi-Central (30-50%)

I ML-based correction allows for a greater understanding of
jet quenching effects!
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Regression Target

I We have two possibilities for the regression target which
should represent the true jet pT.

1. pT of the Matched Detector Level Pythia Jet
I Advantage: Has physical meaning.
I Disadvantage: Adds another parameter, the matching

radius, to the ML.
2. Use the true pT fraction multiplied by the fully corrected jet

pT.
I Advantage: No additional parameters.
I Disadvantage: Difficult to exactly measure PYTHIA

contribution to a hybrid cluster.

I Two regression targets yield similar results.

Hannah Bossi (Yale University) ML4Jets 2020 hannah.bossi@yale.edu 21



Feature Scores
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Jet Mass
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Inclusive Charged Jet Spectra, Semi-Central
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Model Comparisons

I Have to be careful with
direct theory comparisons,
ML algorithm is making a
different set of ”cuts”.
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Comparison of Algorithms Used
1. Neural Network

I Utilize a series of nodes and layers, each with different
weighting functions.

I Each node carries a feature of the input data which is
connected to every other node.

I These nodes can either excite or inibit each other, allowing
for complex relations.

2. Linear Regression
I Creates a linear mapping between independent and

dependent variables.
I Iteratively tries to find the best fitting line which minimizes

error.
I Can use a gradient descent algorithm to find the best fitting

line.
3. Random Forest

I Uses an ensemble of decision trees, taking the mean
prediction for the case of regression.

I Possible to retrieve Gini index weightings or to look at
individual decision trees→ sheds light on the black box.
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