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What is Al Safety?

\/ We can all agree, we should try not to get murdered by robots



What is Al Safety?

For starters, let’s not get killed by this robot!



Tesla Adversary

Wipers engaged by carefully-chosen noise

‘\

Tencent https:// www.youtube.com/watch?v=6QSsKy0I9LE


https://www.youtube.com/watch?v=6QSsKy0I9LE

Tesla Adversary

Stickers placed on pavement at intersection

ttps:// www.voutube.com/watch /v=60>sK vOIY


https://www.youtube.com/watch?v=6QSsKy0I9LE

Tesla Adversary

Autopilot veers into oncoming lanel!

Tencent htt


https://www.youtube.com/watch?v=6QSsKy0I9LE

Tesla Autopilot Attack

Nearly imperceptible artifacts can create imaginary lanes,
traffic signs, etc:

Fig 33. Fake lane in digital level

Whitepaper by Tencent Security Lab



https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Research_of_Tesla_Autopilot.pdf?utm_campaign=the_algorithm.unpaid.engagement&utm_source=hs_email&utm_medium=email&utm_content=71373464&_hsenc=p2ANqtz--JBcpulYc-GW10QtUBBH_VTXHIiaAgdM-w3SdhQ1uop_m2MwFNQK8b-uDQ6hEgwH-08IpeSACOY432EYgtoku-uYAOZA&_hsmi=71373464

Al Ethics

But it’s not all just killer robots!

AMER[CAN BANKER,  nsections -

BankThink Al ¢ h Ip banks The Bancorp warns of looming OCC's Otting on CRA timeline, Bank
make bette d s, but it .. BSA-related civil money penalty Camels and fintech legal battles pot b

BankThink Al can help banks make
better decisions, but it doesn't remove
bias




Al Ethics

But it’s not all just killer robots!

AMERICAN BANKER

STk Ao ol bk MIT Researcher Exposing Bias in Facial
Recognition Tech Triggers Amazon’s Wrath

O By Matt O'Brien | April 8, 2019
BankThink Al ca

better decisions,
bias




Al Ethics

But it’s not all just killer robots!

AMERICAN BANKER

STk Ao ol bk | MIT Researcher Exposing Bias in Facial
Recognition Tech Triggers Amazon’s Wrath

BdnkThink AI ca By Matt O'Brien | April 8, 2019
better decisions,

OW READING: The Latest

Artificial Intelligence Oct 25

- A biased medical algorithm favored white people
for health-care programs



Al Ethics

But it’s not all just killer robots!

AMERICAN BANKER

STk Al co ol bk MIT Researcher Exposing Bias in Facial
Recognition Tech Triggers Amazon’s Wrath

BankThink AI ~ e By Matt O'Brien | April 8, 2019
better decisig TechPolicy/ AlEthics

OW READING: The Latest

Artificial Intelligence Oct 25 AI is sending people to jail

. A biased medic

forheatth-care,. —and getting it wrong

Using historical data to train risk assessment tools could mean that
machines are copying the mistakes of the past.

by Karen Hao Jan 21,2019




What about HEP?




~ What about HEP?




Al &

* Deep learning is becoming

increasingly pervasive in our
field

(o0}
o

We should at least consider
whether some of the issues
identified in other fields
applies to us

Papers per year [hep-ex]

In particular, we investigate
whether there exists some

kind of systematic bias that
could affect science results
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Adversarial Examples

Fast Gradient Sign Method: 7) = esign (Vm J(07 L, y))

+.007 x
* Sgn(Val (0. 2.9))  ign(v,J(6,2,y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

 Goodfellow et al. show formally that the sensitivity of a network to these
types of attack scales with input dimensionality

* Empirical evidence also suggests that deep networks are more
susceptible

arXiv:1412.6572



https://arxiv.org/abs/1412.6572

Adversarial Examples

What happens if we do this to, say, a jet, when shown to
a QCD/Boson tagger?

J={p% 0" ¢"):k=1...N;}



Adversarial Examples

What happens if we do this to, say, a jet, when shown to
a QCD/Boson tagger?

JZ{(plff,nk,¢k) :kzl"‘NJ} * Here, f(J) is the
. classifier network
0J = Slgn[vJ£XE(f(J)7 ytarget)]



Adversarial Examples

What happens if we do this to, say, a jet, when shown to

a QCD/Boson tagger?
_ k k kY. 1. _
*]_{(pTvn 7¢ )‘k_l"‘N']} * Here, f(J) is the
. classifier network
0J = Slgn[vJ£XE(f(J)7 yta,rget)]
P1 et = 2.0 TeV, miet = 143.0 GeV ° mr 1.00
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M7 Miet N = Njet
pr=2.0 TeV |
m = 143.0 GeV Perturb pT/eta/phi

of constituents
Pr(signal | J) = 42% (Scale 0-1 GeV)



Adversarial Examples

What happens if we do this to, say, a jet, when shown to
a QCD/Boson tagger?

6
0.4 pt,jet = 2.0 TeV, mjer = 143.0 GeV I
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m = 143.0 GeV

Pr(signal | J) = 42%

J={p% 0" ¢"):k=1...N;}

* Here, f(J) is the

. classifier network
0J = Slgn[vJ£XE(f(J)7 ytarget)] t
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Detector Systematics

e Taking this further, imagine an arbitrary “particle-level” jet
e Simulation maps these to an observed object.J = Dg, (j)

e |f this jet is from an LHC collision, the physical ATLAS
detector will map it to a different object .J' = Dy (7)



Detector Systematics

e \We often train ML models, and design analyses using
simulated events

 Therefore the expected network response:
Yexp = f[Dsim (])] ‘jwphysics
IS a key part of our statistical models

* However, what is observed in an analysis signal region is:
Yobs = f[Ddet (])] ‘jwphysics



Detector Systematics

 Obviously, we do our best to minimize the difference
between Dgi,,, and D get

e But what if we tried to ?



Detector Systematics

 Obviously, we do our best to minimize the difference
between Dgi,,, and D get

e But what if we tried to ?

Given a jet J and a classifier f(J): * Our samples are dijets (BG)
and y+Z(qq) (signal), simulated

J — {(prl%, nk) ¢k) k=1 NJ} With MG+pythia8+Delphes



Detector Systematics

 Obviously, we do our best to minimize the difference
between Dgi,,, and D get

e But what if we tried to ?
Given a jet J and a classifier f(J): * Our samples are dijets (BG)
and y+Z(qq) (signal), simulated
J = {(prl%, nk) ¢k) k=1 NJ} With MG+pythia8+Delphes

We want to train an adversary g(J):
** g(J) is constrained

/
g ( J ) — J so that it can only modify
pT’s by 2%, and eta/phi by 0.02

Such that the classifier network sees everything as background:

f(J) = f(g(J)) = yng



Detector Systematics

 Obviously, we do our best to minimize the difference
between Dgi,,, and D get

e But what if we tried to ?
Given a jet J and a classifier f(J): * Our samples are dijets (BG)
and y+Z(qq) (signal), simulated
J = {(prl%, nk) ¢k) k=1 NJ} With MG+pythia8+Delphes

We want to train an adversary g(J):
** g(J) is constrained

/
g ( J ) — J so that it can only modify
pT’s by 2%, and eta/phi by 0.02

Such that the classifier network sees everything as background:

f(J) = f(g(J)) = yng

But! We also require the adversary g, to be sneaky...



Adversarial Mismodelling

To train such an adversary, we write two loss functions:

Applied only to
signal events ——* £51g lOg(l — ( (J) ))
— f(

iopliec only 1o / Z Afjbs O (J) — 0‘” (g(])))?

background events



Adversarial Mismodelling

Binary crossentropy

To train such an adversary, we write two loss functions: , ,
perturbed signal jets

Loy Llog(1— f(g())) backgrouma
Log = Aas (f(J) = fg(])))°
2 An(00(7) = 00 (g(1))*



Adversarial Mismodelling

To train such an adversary, we write two loss functions:

Lsig = log(1 — f(g(J)))
»C — )\CIS ( f(g( )))

(J)
/ > A0 () - 0(g(1)))?

Mean squared error

to minimize change in
the classifier’s response
to background jets



Adversarial Mismodelling

To train such an adversary, we write two loss functions:

»Csig — lOg(l T ( (J)))
»C — )\CIS (f(J) — f(g( 7>“2

J \

K L%bs (OW(1) =0 (g(])))?

Mean squared error(s)
to minimize change in
any other observables
that we wish to remain
unchanged



Implementing the Attack

* For auxiliary observables, we
selected the jet pr and mass

 Tune loss terms by maximizing the
value of Lsig

e Stop training when goodness-
of-fit of the auxiliary observables
becomes unacceptable.

e This gives worst-case
mismodelling while remaining
“unnoticeable”
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A.U.

Perturbed Distributions
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Results

Low-level |

2 5 4 —— Low-level (undertrained)
8 - Low-level (undertrained)
c —— High-level
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Cut Threshold

We compared a simple cut&count sensitivity for a boosted resonance with:
* ParticleFlow Network (operating on low-level jet constituent 4-vectors)

e HL Network (operating on high-level jet pt/mass/n/D2)



Results

Low-level
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We compared a simple cut&count sensitivity for a boosted resonance with:
* ParticleFlow Network (operating on low-level jet constituent 4-vectors)

e HL Network (operating on high-level jet pt/mass/n/D2)



Results

—  Low-level (undertrained)
— Low-level (undertrained)
— High-level
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Unexpectedly, we found the
effect is reduced when classifiers
are deliberately undertrained.
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We compared a simple cut&count sensitivity for a boosted resonance with:
* ParticleFlow Network (operating on low-level jet constituent 4-vectors)

e HL Network (operating on high-level jet pt/mass/n/D2)



Conclusions

We show that is possible to find

systematic mismodellings 9(J) — J',
that confuse NN classifiers
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Conclusions

We show that is possible to find

systematic mismodellings 9(J) — J',

that confuse NN classifiers

e These effects are subtle,

in control/validation

regions
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Conclusions

We show that is possible to find

systematic mismodellings 9(J) — J',
that confuse NN classifiers

e These effects are subtle,
in control/validation
regions

e Susceptibility is reduced, but not
entirely, when using
fewer and higher-level inputs
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Conclusions

We show that is possible to find

systematic mismodellings 9(J) — J',
that confuse NN classifiers

.5 1.00 Low-level (converged)
* These effects are subtle, B Low-level (undertrained)
. . . © 095 e High-level (converged)
iIn control/validation £ .
regions & 0.90
2 .
Do 2 0851
e Susceptibility is reduced, but not G
entirely, when using &H 5
fewer and higher-level inputs §' 075 |
0.78 0.'80 0.;32 0.;34 0.]86 0.]88
e \We also find evidence that Classifier AUC

undertraining nets may help
reduce susceptibility



Future Work

. does this study give any sense of a “systematic” that
can be assessed for techniques used today

* |t is more like an upper bound for systematic exposure due to
mismodelling

* However, this method could be used to ML
, reducing the need to worry



Future Work

. does this study give any sense of a “systematic” that
can be assessed for techniques used today

* |t is more like an upper bound for systematic exposure due to
mismodelling

* However, this method could be used to ML
, reducing the need to worry

* The adversarial network g(J) probes the “space of mismodellings”, but
tells us nothing about statistics: i.e. how /ikely is a given mismodelling

* However, the mathematical apparatus gives us access to explore this
large function space e.g. using optimization.

* We hope this could be a starting point to a more robust understanding
of high-dimensional, nonlinear systematic effects in HEP data!
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Backup

2.0 1

1.0 A

0.5 -

Relative Discovery Significance

Low-level (PFN)
Low-level (EFN, undertrained?)
—— High-level

—— Expected value ——== True value

0.0 0.2 0.4 0.6 0.8 1.0
Classifier Threshold




