
$N_{b-\text{jet}}$ bin migrations in $t\bar{t}b\bar{b}$

- starting from $t\bar{t}b\bar{b}$ production at LO we shower:
 - ▶ all the events with Pythia 8.2 (LOPS)
 - ▶ only the events that, at LO, belong to $N_{b-\text{jet}} \in \{0,1\}$ (LOPS cat=1)
 - ▶ all the other events (LOPS cat=2)
- to study migration of events across $N_{b-\text{jet}}$ bins due to parton shower

$N_{b-{ m jet}}$ observable

- in bin i the N_{b-jet} measures the cross section requiring number of b-jets to be $\geq i$
 - ▶ 0th bin: the total cross section
 - ▶ 1st bin: includes the cross section of 2nd bin it it, etc.
- *b*-jets:
 - anti- k_t , R = 0.4
 - cuts: $p_T > 25$ GeV, $\eta < 2.5$

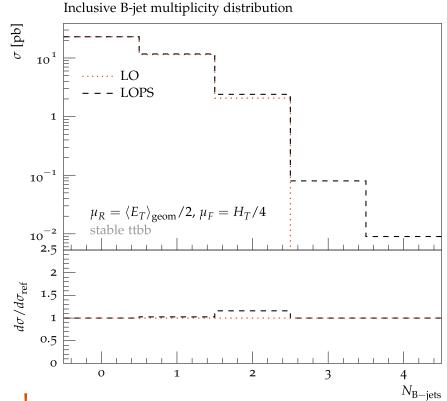
- 2nd bin at LO
 - ▶ b partons form two b-jets that both satisfy the cuts

- 1st bin at LO
 - ▶ b partons merged into one b-jet that satisfies the cuts
 - ▶ b partons form two b-jets and one escapes the cuts
- 0th bin at LO
 - ▶ b partons merged into one b-jet that escapes cuts
 - ▶ b partons form two b-jets that both escape cuts

$N_{b-{ m jet}}$ observable

- in bin i the N_{b-jet} measures the cross section requiring number of b-jets to be $\geq i$
 - ▶ 0th bin: the total cross section
 - ▶ 1st bin: includes the cross section of 2nd bin it it, etc.

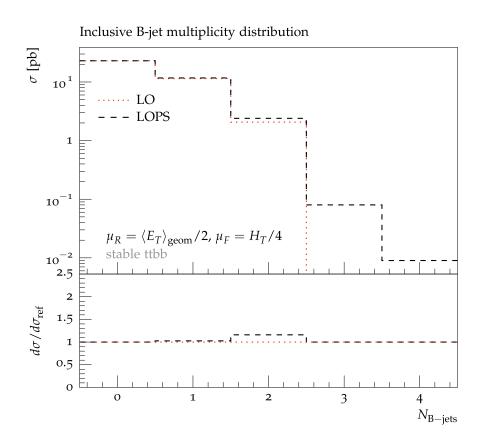
- 2nd bin at LO
 - ▶ *b* partons form two *b*-jets that both satisfy the cuts


category 2

- 1st bin at LO
 - ▶ *b* partons merged into one *b*-jet that satisfies the cuts
 - ▶ b partons form two b-jets and one escapes the cuts
- 0th bin at LO
 - ▶ b partons merged into one b-jet that escapes cuts
 - ▶ b partons form two b-jets that both escape cuts category

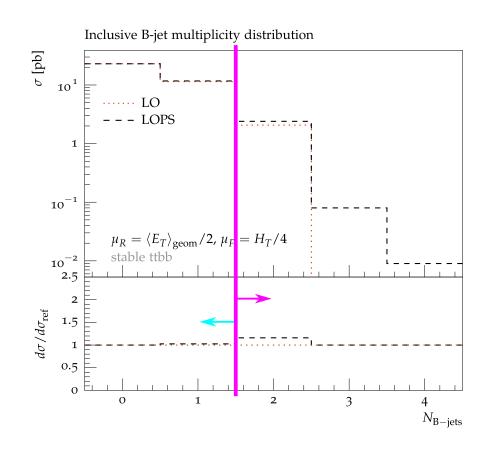
N_{b-jet} and parton shower

- Parton shower
 - ▶ generates emission that gets clustered into *b*-jets
 - gives recoils to b-partons through momentum reshuffling
 - creates new b-partons via "double-splittings"
- That is:
 - it can move an event from one bin to another bin of N_{b-iet}
 - but not destroy or create new events

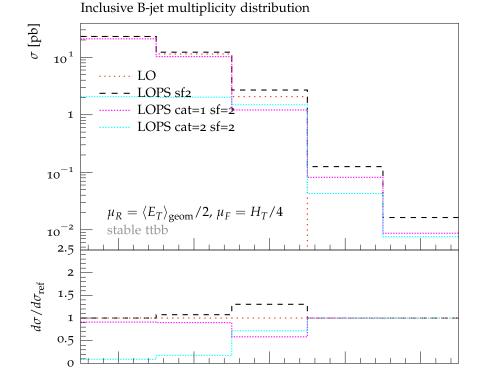


Parton shower is a unitary on N_{b-jet} !

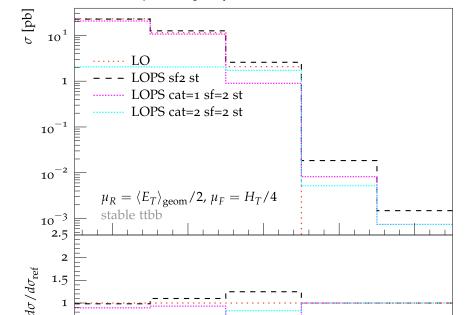
$N_{b-\text{jet}}$ and parton shower


- Parton shower
 - ▶ generates emission that gets clustered into *b*-jets
 - gives recoils to b-partons through momentum reshuffling
 - creates new b-partons via "double-splittings"
- Bin migrations can be large
 - ► $LO(N_{b-jet} \ge 0)/LO(N_{b-jet} \ge 2) \sim 11$
 - ► $N_{b-jet} \ge 2$: LOPS/LO = 1.16

$N_{b-{ m jet}}$ bin migrations

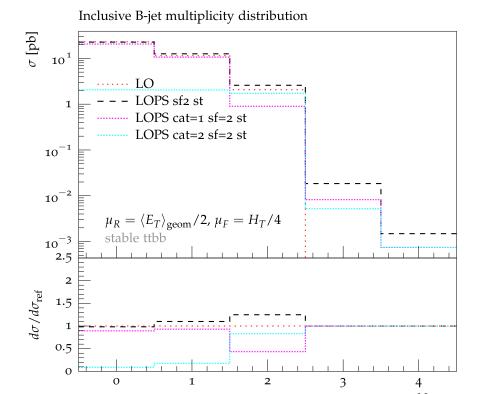

- We study bin migration across the $N_{b-\text{jet}} \ge 1$ boundary
- scalup dependence
 - ▶ Multiply the default $H_T/4$ by 2 and 4
- Impact of the first emission vs. the rest
 - ▶ We veto all emissions after the first emission has been generated
- We do the same for LHE and NLOPS

$\overline{N_{b-\mathrm{jet}}}$ bin migrations


- We study bin migration across the $N_{b-jet} \ge 1$ boundary
- scalup dependence
 - ▶ Multiply the default $H_T/4$ by 2 and 4
- Impact of the first emission vs. the rest
 - ▶ We veto all emissions after the first emission has been generated
- We do the same for LHE and NLOPS

N_{b-jet} bin migrations

- We study bin migration across the $N_{b-jet} \ge 1$ boundary
- scalup dependence
 - ▶ Multiply the default $H_T/4$ by 2 and 4
- Impact of the first emission vs. the rest
 - ▶ We veto all emissions after the first emission has been generated
- We do the same for LHE and NLOPS


Inclusive B-jet multiplicity distribution

0.5

$N_{b-{ m jet}}$ bin migrations

- We study bin migration across the $N_{b-jet} \ge 1$ boundary
- scalup dependence
 - ▶ Multiply the default $H_T/4$ by 2 and 4
- Impact of the first emission vs. the rest
 - ▶ We veto all emissions after the first emission has been generated
- We do the same for LHE and NLOPS

Results

- LO vs LOPS
 - ► Negative migration
 - only weakly dependent of scalup (esp. cont. of higher emissions)
 - ▶ interpreted as fragmentation effect
 - ► Positive migration
 - dominates the total migration effect
 - strong scalup dependence, dominated by 1st emission

muR,muF	muQ	cat=1 (first/higher)	cat=2 (first/higher)	total (first/higher)
def/2,HT/4	HT/4	+42.5 (+32.2/+10.3)	-26.6 (-13.6/-13.0)	+16.0 (+21.4/- 5.4)
def/2,HT/4	HT/2	+58.6 (+43.4/+15.2)	-28.0 (-16.8/-11.2)	+30.3 (+24.9/+ 5.4)
def/2,HT/4	HT	+71.0 (+51.3/+19.7)	-30.8 (-18.0/-12.8)	+40.2 (+33.3/+ 6.9)
def/2,HT/4	HT – HT/4	+28.5 (+19.1/+ 9.4)	- 4.2 (- 4.4/+ 0.2)	+24.2 (+11.9/+12.3)

• LHE vs NLOPS

$$\frac{\text{muR,muF}}{\text{def/2,HT/4}} \frac{\text{cat=1}}{+ 32.5} \frac{\text{cat=2}}{- 21.8} \frac{\text{total}}{+ 11.7}$$