Space-time model for colour reconnection

Miroslav Myska

in collaboration with

J. Bellm, B. Blok, C.B. Duncan, S. Gieseke, A. Siodmok

Outline

- 1. Introduction and motivation
- 2. Basic building blocks of MPI in Herwig
- 3. MPI and Parton Shower space-time models
- 4. Preliminary results
- 5. Summary and outlook

Motivation

➤ Non perturbative effects like colour reconnection start to be important source of uncertainties in precise LHC measurements (for example top mass).

Top quark mass: precision matters

e.g.
S. Argyropoulos , T. Sjöstrand,
Effects of color reconnection on tt
final states at the LHC
JHEP 1411 (2014) 043

- Our aim is to introduce the space-time picture in Herwig 7
- notice a similar effort in Pythia [S. Ferreres-Solé, T. Sjöstrand, Eur.Phys.J. C78 (2018) no.11, 983]

Basic building blocks of MPI in Herwig

Inclusive hard jet cross section in pQCD:

$$\sigma^{\text{inc}}(s, p_t^{\text{min}}) = \sum_{i,j} \int_{p_t^{\text{min}^2}} dp_t^2 \int dx_1 dx_2 \ f_i(x_1, Q^2) f_j(x_2, Q^2) \ \frac{d\hat{\sigma}_{ij}}{dp_t^2}$$

 $\sigma^{\rm inc} > \sigma_{\rm tot}$ eventually

Interpretation:

- σ^{inc} counts all partonic scatters in a single pp collision
- more than a single interaction

$$\sigma^{\rm inc} = \langle n_{\rm dijets} \rangle \sigma_{\rm inel}$$

Basic building blocks of MPI in Herwig

Assumptions:

▶ the distribution of partons in hadrons factorizes with respect to the b and x dependence \Rightarrow average number of parton collisions:

$$\begin{split} \bar{n}(\vec{b},s) &= L_{\text{partons}}(x_{1},x_{2},\vec{b}) \otimes \sum_{ij} \int \mathrm{d}p_{t}^{2} \frac{\mathrm{d}\hat{\sigma}_{ij}}{\mathrm{d}p_{t}^{2}} \\ &= \sum_{ij} \frac{1}{1+\delta_{ij}} \int \mathrm{d}x_{1} \mathrm{d}x_{2} \int \mathrm{d}^{2}\vec{b}' \int \mathrm{d}p_{t}^{2} \frac{\mathrm{d}\hat{\sigma}_{ij}}{\mathrm{d}p_{t}^{2}} \\ &\times D_{i/A}(x_{1},p_{t}^{2},|\vec{b}'|) D_{j/B}(x_{2},p_{t}^{2},|\vec{b}-\vec{b}'|) \\ &= \sum_{ij} \frac{1}{1+\delta_{ij}} \int \mathrm{d}x_{1} \mathrm{d}x_{2} \int \mathrm{d}^{2}\vec{b}' \int \mathrm{d}p_{t}^{2} \frac{\mathrm{d}\hat{\sigma}_{ij}}{\mathrm{d}p_{t}^{2}} \\ &\times f_{i/A}(x_{1},p_{t}^{2}) G_{A}(|\vec{b}'|) f_{j/B}(x_{2},p_{t}^{2}) G_{B}(|\vec{b}-\vec{b}'|) \\ &= A(\vec{b}) \sigma^{\text{inc}}(s;p_{t}^{\text{min}}) \; . \end{split}$$

 at fixed impact parameter b, individual scatterings are independent (leads to the Poisson distribution)

Basic building blocks of MPI in Herwig

From assumptions:

- > independent scatters at fixed impact parameter **b**
- > factorization of **b** and **x** dependence

$$\langle n(b,s)\rangle = A(b)\sigma^{inc}(s)$$

where A(b) is partonic overlap function of the colliding hadrons

$$A(\vec{b}) = \int d^2 \vec{b'} g(\vec{b'}) g(\vec{b} - \vec{b'})$$
 with $\mathbf{g(b')}$ being EM FF

$$g(\vec{b'}) = \frac{1}{(2\pi)^2} \int d^2\vec{k} \frac{e^{i\vec{k}\vec{b'}}}{\left(1 + \frac{|\vec{k}|^2}{\mu^2}\right)^2} \stackrel{\text{o.os}}{\stackrel{\text{o.os}}{\neq}} _{0.03}$$

and μ as a free parameter (i.e. not fixed at EM value of 0.71 GeV²)

=> two main parameters μ , p_t^{min}

Space-time Model - shower

G. C. Fox, S. Wolfram, A Model for Parton Showers in QCD Nucl. Phys. B168 (1980) 285

Herwig7:

fortranHerwig-like algorithm

G. Corcella et al., JHEP 0101 (2001) 010, chapter 3.8

> Mean lifetime

virtuality dependence - interpolation between on-shell and high virtuality

$$\tau(q^2) = \frac{\hbar\sqrt{q^2}}{\sqrt{(q^2 - M^2)^2 + (\Gamma q^2/M)^2}}$$

Distance travelled for proper lifetime d

Prob(proper time
$$> t^*$$
) = exp($-t^*/\tau$)

$$t = \gamma t^*, \boldsymbol{d} = \boldsymbol{\beta} \gamma t^*$$

Space-time Model - shower

- ➤ Most of ISR/FSR has very small chance to travel far away
- "final" gluons however can "fly" even several fermi

Space-time Model - shower

- Most of ISR/FSR has very small chance to travel far away
- "final" gluons however can "fly" even several fermi

Space-time Model - smearing of scatter points in b space

 Each scatter (MPI) gets its point in xy plane (inspired by heavy ion collision)

- Shower evolves partons further in xyz
- Motivation to cluster "close" partons

Issues:

- → Impact parameter
- → Proton profile
 - Black disk
 - Gaussian
 - Overlap function (Bessel)
- → Proton mean radius (r₀)
- → Proton remnants

Poisson sampling of impact parameter of collision (b)

Space-time Model - smearing of scatter points in b space

Space-time Model - smearing of scatter points in b space

Space-time Model – re-connection

- "Final" partons = forming clusters
- Motivation: 1) interconnect MPI's
 - 2) correct for errors in leading-color approximation of parton shower
- Needs a "measure" and law to set probability to decide YES/NO, p_{RC} to tune

Space-time Model - preliminary results

First idea: critical radius

→ plain CR + critical radius (new parameter)

Not tuned (just to see the effect), MPI smearing only - no shower ST

Space-time Model - preliminary results

First idea: critical radius

→ plain CR + critical radius (new parameter)

Not tuned (just to see the effect), **MPI + shower ST**, $p_{reco} = 1$ (same as previous slides)

Space-time Model – preliminary results

$$R_{ij}^{2} = \frac{\Delta d_{\perp ij}^{2}}{d_{0}^{2}} + \Delta y_{ij}^{2}$$

$$p_{\text{M,reco}} = \exp\left(-\frac{R_{14} + R_{23}}{R_{12} + R_{34}}\right) = \exp\left(-\frac{\sum R_{\text{new}}}{\sum R_{\text{old}}}\right)$$

Space-time Model – preliminary results

Summary and outlook

- We introduced space-time picture to MPI (probe b from the overlap function) and to the Parton Shower (based on mean life-time)
- We study sources of displacement and its dependence on the main parameters
- We introduced space-time information to the CR model in Herwig and studied its influence on MB and UE event data (now tuning).
- Space-time picture could serve us as a starting point to study collective effects in p-p collisions