ATLAS CZ+SK 2019 WORKSHOP

FINITE ELECTROWEAK MONOPOLE FROM BRANEWORLD

Filip Blaschke Institute of Physics, Silesian University in Opava Institute of Experimental and Applied Physics, CVUT

PTEP 2018 arXiv:1802.06649 [hep-ph]

in collaboration with Masato Arai, Minoru Eto and Norisuke Sakai

WHAT HAVE THE EXTRA DIMENSIONS EVER DONE FOR US?

TWO WAYS OF HIDING EXTRA DIMENSIONS

TWO WAYS OF HIDING EXTRA DIMENSIONS

I) Under the carpet

In **KK**-like theories extra dimensions are compactified to extremely small size.

TWO WAYS OF HIDING EXTRA DIMENSIONS

I) Under the carpet

2) In plain sight 3d brane bulk directions

In **KK**-like theories extra dimensions are compactified to extremely small size.

In the **brane-world** scenario matter is confined on 3dimensional brane floating inside multi-dimensional **bulk**.

$$\phi(x, y) = \sum_{n=-\infty}^{\infty} \phi^{(n)}(x) e^{2i\pi ny/R}$$

$$m_n^2 = \frac{4\pi^2 n^2}{R^2}$$

$$\phi(x, y) = \sum_{n=-\infty}^{\infty} \phi^{(n)}(x) e^{2i\pi ny/R}$$

$$m_n^2 = \frac{4\pi^2 n^2}{R^2}$$

Unification of gravity & elmagQuantization of charge

. . .

$$\phi(x, y) = \sum_{n=-\infty}^{\infty} \phi^{(n)}(x) e^{2i\pi ny/R}$$

$$m_n^2 = \frac{4\pi^2 n^2}{R^2}$$

Unification of gravity & elmagQuantization of charge

. . .

In field theory, a brane is an extended object (background solution) made of some scalar fields. It creates a potential well which traps low-energy modes of fields.

$$\phi(x, y) = \sum_{n=0}^{\infty} \phi^{(n)}(x)\psi_n(y)$$
$$-\partial_y^2\psi_n + U(y)\psi_n = E_n\psi_n$$

$$\phi(x, y) = \sum_{n=-\infty}^{\infty} \phi^{(n)}(x) e^{2i\pi ny/R}$$

$$m_n^2 = \frac{4\pi^2 n^2}{R^2}$$

Unification of gravity & elmagQuantization of charge

. . .

In field theory, a brane is an extended object (background solution) made of some scalar fields. It creates a potential well which traps low-energy modes of fields.

$$\phi(x, y) = \sum_{n=0}^{\infty} \phi^{(n)}(x)\psi_n(y)$$
$$-\partial_y^2\psi_n + U(y)\psi_n = E_n\psi_n$$

KK compactification is, in fact, a special case of infinitely deep (square) potential well.

the brane is furnished via a topological soliton, typically a domain wall

the brane is furnished via a topological soliton, typically a domain wall $\mathscr{L} = \frac{1}{2} \left(\partial \Phi \right)^2 - \frac{\lambda^2}{2} \left(v^2 - \Phi^2 \right)^2$ $\Phi_{\rm DW} = v \tanh(v\lambda y)$

The idea: domain wall = position dependent vacuum. Fields naturally condensate in the middle (false) vacuum

the brane is furnished via a topological soliton, typically a domain wall

$$\mathscr{L} = \frac{1}{2} (\partial \Phi)^2 - \frac{\lambda^2}{2} (v^2 - \Phi^2)^2$$
$$\Phi_{\rm DW} = v \tanh(v\lambda y)$$

The idea: domain wall = position dependent vacuum. Fields naturally condensate in the middle (false) vacuum

This works far better than it should [Rubakov & Shaposhnikov, 1983] ''Do we live inside a domain wall?''

the brane is furnished via a topological soliton, typically a domain wall

$$\mathscr{L} = \frac{1}{2} (\partial \Phi)^2 - \frac{\lambda^2}{2} (v^2 - \Phi^2)^2$$
$$\Phi_{\rm DW} = v \tanh(v\lambda y)$$

Typical domain wall profile $m(y) \sim \tanh(y)$

Typical domain wall profile $m(y) \sim \tanh(y)$

Main idea: "Position-dependent mass" $i(\Gamma \cdot \partial)\Psi - m(y)\Psi = 0$

Typical domain wall profile $m(y) \sim \tanh(y)$

Main idea: "Position-dependent mass" $i(\Gamma \cdot \partial)\Psi - m(y)\Psi = 0$ $\Psi = \psi_L(x)f_L(y) + \psi_R(x)f_R(y)$ $\gamma^5\psi_{L,R} = \mp \psi_{L,R}$

Typical domain wall profile $m(y) \sim \tanh(y)$

Main idea: "Position-dependent mass" $i(\Gamma \cdot \partial)\Psi - m(y)\Psi = 0$ $\Psi = \psi_I(x)f_I(y) + \psi_R(x)f_R(y)$ $\gamma^5 \psi_{L,R} = \mp \psi_{L,R}$ $f_I^{(0)}(y) \sim e^{-\int^y m(\bar{y})d\bar{y}} = \operatorname{sech}(y)$ $f_{\mathcal{P}}^{(0)}(y) \sim e^{\int^{y} m(\bar{y})d\bar{y}} = \cosh(y)$

Typical domain wall profile $m(y) \sim \tanh(y)$

Main idea: "Position-dependent mass" $i(\Gamma \cdot \partial)\Psi - m(y)\Psi = 0$ $\Psi = \psi_L(x)f_L(y) + \psi_R(x)f_R(y)$ $\gamma^5 \psi_{L,R} = \mp \psi_{L,R}$ $f_L^{(0)}(y) \sim e^{-\int^y m(\bar{y})d\bar{y}} = \operatorname{sech}(y)$ $f_R^{(0)}(y) \sim e^{\int^y m(\bar{y})d\bar{y}} = \operatorname{cosh}(y)$

Typical domain wall profile $m(y) \sim \tanh(y)$

 Bulk fermions condensate on the domain wall.
Massless mode is guaranteed by Index theorem.
Only left handed zero mode is localized!

Main idea: "Position-dependent mass" $i(\Gamma \cdot \partial)\Psi - m(y)\Psi = 0$ $\Psi = \psi_L(x)f_L(y) + \psi_R(x)f_R(y)$ $\gamma^5 \psi_{L,R} = \mp \psi_{L,R}$ $f_I^{(0)}(y) \sim e^{-\int^y m(\bar{y})d\bar{y}} = \operatorname{sech}(y)$ $f_R^{(0)}(y) \sim e^{\int^y m(\bar{y})d\bar{y}} = c$

Typical domain wall profile $m(y) \sim \tanh(y)$

 Bulk fermions condensate on the domain wall.
Massless mode is guaranteed by Index theorem.
Only left handed zero mode is localized!

This is known as Jackiw-Rebbi mechanism in condense matter physics.

Main idea: "Position-dependent mass" $i(\Gamma \cdot \partial)\Psi - m(y)\Psi = 0$ $\Psi = \psi_L(x)f_L(y) + \psi_R(x)f_R(y)$ $\gamma^5 \psi_{L,R} = \mp \psi_{L,R}$ $f_I^{(0)}(y) \sim e^{-\int^y m(\bar{y})d\bar{y}} = \operatorname{sech}(y)$ $f_R^{(0)}(y) \sim e^{\int^y m(\bar{y})d\bar{y}} =$

Typical domain wall profile $m(y) \sim \tanh(y)$

Typical domain wall profile $m(y) \sim \tanh(y)$

Main idea: "Position-dependent coupling" $\mathscr{L} = -m'(y)^2 F_{MN} F^{MN}$

Typical domain wall profile $m(y) \sim \tanh(y)$

Main idea: "Position-dependent coupling" $\mathscr{L} = -m'(y)^2 F_{MN} F^{MN}$ $A_{y} = 0 \qquad A_{\mu} = \frac{a_{\mu}(x)f(y)}{2m'(y)}$ $\left(-\partial_{y}^{2} + \frac{m''(y)}{m'(y)}\right)f^{(n)} = \mu_{n}^{2}f^{(n)}$

Typical domain wall profile $m(y) \sim \tanh(y)$

Main idea: "Position-dependent coupling" $\mathscr{L} = -m'(y)^2 F_{MN} F^{MN}$ $A_{y} = 0 \qquad A_{\mu} = \frac{a_{\mu}(x)f(y)}{2m'(y)}$ $\left(-\partial_{y}^{2} + \frac{m''(y)}{m'(y)}\right)f^{(n)} = \mu_{n}^{2}f^{(n)}$ $f^{(0)} \sim m'(y) \Rightarrow A^{(0)}_{\mu}(x, y) \sim a^{(0)}_{\mu}(x)$ hep-th:1801.02498

Typical domain wall profile $m(y) \sim \tanh(y)$

- Bulk gauge bosons condensate on the domain wall.
 Massless mode is guaranteed by Index theorem?
 Effective gauge couplings
- do not depend on details!

Main idea: "Position-dependent coupling" $\mathscr{L} = -m'(y)^2 F_{MN} F^{MN}$ $A_{\mu} = \frac{a_{\mu}(x)f(y)}{2m'(y)}$ $\left(-\partial_{y}^{2} + \frac{m'''(y)}{m'(y)}\right)f^{(n)} = \mu_{n}^{2}f^{(n)}$ $f^{(0)} \sim m'(y) \Rightarrow A_{\mu}^{(0)}(x, y) \sim a_{\mu}^{(0)}(x)$ hep-th:1801.02498

Typical domain wall profile $m(y) \sim \tanh(y)$

Bulk gauge bosons 0 condensate on the domain wall. Massless mode is guaranteed by Index theorem? • Effective gauge couplings do not depend on details! hep-th:1811.08708 $dy \bar{\Psi} A_{\mu} \Psi \sim \left[dy \left(f_L^{(0)} \right)^2 = 1 \right]$

Main idea: "Position-dependent coupling" $\mathscr{L} = -m'(y)^2 F_{MN} F^{MN}$ $A_{\mu} = \frac{a_{\mu}(x)f(y)}{2m'(y)}$ $\left(-\partial_{y}^{2} + \frac{m''(y)}{m'(y)}\right)f^{(n)} = \mu_{n}^{2}f^{(n)}$ $f^{(0)} \sim m'(y) \Rightarrow A^{(0)}_{\mu}(x, y) \sim a^{(0)}_{\mu}(x)$ hep-th:1801.02498

DOMAIN WALL PARADIGM

- Successful localization of chiral fermions and gauge bosons with charge universality.
- Scalar fields (i.e. Higgs) can be localized using both positiondependent mass or coupling ideas (the latter is more robust, see hep-th\1811.08708).
- Therefore, we have all the ingredients for the standard model!
- Essentially the same results applies to other solitons, e.g. vortices, monopoles ...

DOMAIN WALL PARADIGM

- Successful localization of chiral fermions and gauge bosons with charge universality.
- Scalar fields (i.e. Higgs) can be localized using both positiondependent mass or coupling ideas (the latter is more robust, see hep-th\1811.08708).
- Therefore, we have all the ingredients for the standard model!
- Essentially the same results applies to other solitons, e.g. vortices, monopoles ...

What brane-worlds have/can ever done for us? SM bugfixing/enhancements:

gauge hierarchy problem
fermion generations problem
grand unification+geometric Higgs mechanism
SUSY breaking
seesaw,

DOMAIN WALL PARADIGM

- Successful localization of chiral fermions and gauge bosons with charge universality.
- Scalar fields (i.e. Higgs) can be localized using both positiondependent mass or coupling ideas (the latter is more robust, see hep-th\1811.08708).
- Therefore, we have all the ingredients for the standard model!
- Essentially the same results applies to other solitons, e.g. vortices, monopoles ...

What brane-worlds have/can ever done for us? SM bugfixing/enhancements:

gauge hierarchy problem
fermion generations problem
grand unification+geometric Higgs mechanism
SUSY breaking
hep-th: I 703.0035 I

FINITE ELECTROWEAK MONOPOLE FROM BRANEWORLD

THE GOAL OF OUR WORK

is to find **minimal but realistic** model with a single extradimension and a domain wall on which **SM arise as an effective four-dimensional low-energy theory**.

In our model, the Higgs:

- spontaneously breaks SM gauge group from $SU(2) \times U(1) \times U(1)$ to $U(1)_{em}$
- gives mass to W and Z bosons and fermions via Yukawa magic
- provides a localization mechanism for gauge fields.

At the same time, a large gap between EW and 5D energy scales emerges naturally and protects low-energy physics from phenomenologically self-terminatory effects coming from extra dimensions.

SM ATTHE CRITICAL POINT

In our model, the domain wall has **two phases** which are separated by **a critical point** in the parameter space, where the Higgs doublet obtains a non-trivial background.

This facilitates spontaneous symmetry breaking of SM gauge group but it also provides **position dependent gauge coupling** for gauge fields and renders the mass of the electroweak monopole finite.

ATOY MODEL

Let us illustrate how it works on a simple U(1) theory: $\mathcal{L} = -\beta(\mathcal{H})^{2}\mathcal{F}_{MN}^{2} + |\mathcal{D}_{M}\mathcal{H}|^{2} + (\partial_{M}\mathcal{T})^{2} - V(\mathcal{T})$ $+ i\bar{\Psi}\Gamma_{M}\mathcal{D}^{M}\Psi + i\bar{\bar{\Psi}}\Gamma_{M}\partial^{M}\tilde{\Psi} + \left(\eta\mathcal{T}\bar{\Psi}\Psi - \tilde{\eta}\mathcal{T}\bar{\bar{\Psi}}\tilde{\Psi} + \chi\mathcal{H}\bar{\Psi}\bar{\Psi} + \text{h.c.}\right)$ $\beta(\mathcal{H})^{2} = \frac{1}{4\mu^{2}}|\mathcal{H}|^{2} \qquad V = \Omega^{2}|\mathcal{H}|^{2} + \lambda^{2}\left(|\mathcal{H}|^{2} + \mathcal{T}^{2} - v^{2}\right)^{2},$

The domain wall has a Higgs condensation above the threshold:

$$\mathcal{T}_{bkg} = v \tanh \lambda v y, \qquad \mathcal{H}_{bkg} = 0, \qquad (\lambda v \le \Omega)$$
$$\mathcal{T}_{bkg} = v \tanh \Omega y, \qquad \mathcal{H}_{bkg} = \bar{v} \operatorname{sech} \Omega y, \qquad (\lambda v > \Omega)$$

Slightly above the critical point, the Higgs has a nearly massless mode:

$$\mathcal{H}(x,y) = \sqrt{\frac{\Omega}{2}} H(x) \operatorname{sech} \Omega y \qquad \qquad \mathcal{L}_{\mathrm{Higgs}}(H) = |D_{\mu}H|^{2} - V_{H}, \quad V_{H} = \lambda_{2}^{2}|H|^{2} + \frac{\lambda_{4}^{2}}{2}|H|^{4},$$
$$\lambda_{2}^{2} = -\frac{4\lambda^{2}\bar{v}^{2}}{3}, \quad \lambda_{4}^{2} = \frac{2\lambda^{2}\Omega}{3},$$

ARBITRARY LARGE MASS GAP

5D parameters

 $[\Omega] = 1 \qquad [\nu\lambda] = 1 \qquad [\mu] = 1 \qquad [\eta, \tilde{\eta}, \chi] = -1/2$ Wall thickness phase I wall thickness phase I 5D gauge coupling Yukawas

effective 4D parameters

 $m_A = \sqrt{2}\mu$ $v_h = \frac{2\sqrt{\Omega}}{\lambda}\varepsilon$ $m_h = \sqrt{\frac{8}{3}}\Omega\varepsilon$ $e = \frac{\sqrt{2}\mu}{v_h}$ gauge bosons mass Higgs VEV Mass of the Higgs 4D gauge coupling

Mild fine-tuning gives an arbitrary large mass gap $\Omega \varepsilon \equiv \sqrt{v^2 \lambda^2 - \Omega^2} \sim \mu \sim 10^2 \text{ GeV}$ $\Omega \sim \lambda^{-2} \sim v^{\frac{2}{3}} \sim \eta^{-2}, \tilde{\eta}^{-2}, \chi^{-2} \ge 10^3 \text{ GeV}$

SMOKING GUNS OF OUR MODEL

Production channel for KK quarks via NG boson Y

$$T = v \tanh\left(\Omega y - \frac{1}{f_Y}Y(x)\right) \quad H = \sqrt{\frac{\Omega}{2}}H(x)\operatorname{sech}\left(\Omega y - \frac{1}{f_Y}Y(x)\right)$$
$$\int_{-\infty}^{\infty} dy \, i\bar{\Psi}\Gamma_M D^M \Psi \supset i\alpha \frac{\sqrt{\Omega}}{v} \partial_\mu Y\left(\bar{\psi}_L^{(1)}\gamma^\mu \psi_L^{(0)} - \bar{\psi}_L^{(0)}\gamma^\mu \psi_L^{(1)}\right)$$

New tree-level diagram for $h \rightarrow \gamma \gamma$

$$H = \bar{v} \left(1 + \frac{\sqrt{2}h(x)}{v_h} \right) \operatorname{sech} \Omega y \,.$$

$$-\int_{-\infty}^{\infty} dy \,|\beta|^2 (\mathcal{F}_{MN})^2 = -\frac{1}{4} \left(1 + 2\frac{\sqrt{2}h}{v_h} + \frac{2h^2}{v_h^2}\right) (F_{\mu\nu}^{(0)})^2$$

MONOPOLE MASS

In SM the mass of the Cho-Maison monopole is divergent. We can regularize it by assuming non-canonical kinetic term for U(1)_Y. In our model, this regularization is a byproduct of localization of SM gauge fields on the domain wall.

EMY proposal:
$$\epsilon_1 = 5\left(\frac{H}{v_h}\right)^8 - 4\left(\frac{H}{v_h}\right)^{10}$$

Our model:
$$\beta^2 = \frac{|H|^2}{\mu^2} \left(10 \frac{|H|^6}{\bar{v}^6} - 9 \frac{|H|^8}{\bar{v}^8} \right)$$

$$-\int_{-\infty}^{\infty} dy \,\beta^2 (\mathcal{B}_{\mu\nu})^2 = -\frac{\epsilon_1}{4} (B^{(0)}_{\mu\nu})^2$$

THANKYOU!