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PART I:

WHAT HAVE THE EXTRA 
DIMENSIONS EVER DONE FOR US?
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3d brane

bulk 
directions

In the brane-world scenario 
matter is confined on 3-

dimensional brane floating inside 
multi-dimensional bulk.

1) Under the carpet 2) In plain sight
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In field theory, a brane is an extended object 
(background solution) made of some scalar 
fields.  It creates a potential well which traps 

low-energy modes of fields.

ϕ(x, y) =
∞

∑
n=0

ϕ(n)(x)ψn(y)

−∂2
yψn + U(y)ψn = Enψn

KK compactification is, in fact, a special 
case of infinitely deep (square) potential 

well.
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LOCALIZATION MECHANISMS

the brane is furnished via a 
topological soliton, typically a 

domain wall

ℒ =
1
2 (∂Φ)2 −

λ2

2 (v2 − Φ2)2

ΦDW = v tanh(vλy)

The idea: domain wall = position 
dependent vacuum.

Fields naturally condensate in the 
middle (false) vacuum

This works far better than it 
should

[Rubakov & Shaposhnikov, 1983]
“Do we live inside a domain wall?”
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Typical domain wall profile Main idea:

“Position-dependent mass”

Bulk fermions condensate 
on the domain wall.
Massless mode is 

guaranteed by Index 
theorem.

Only left handed zero 
mode is localized!

i(Γ ⋅ ∂)Ψ − m(y)Ψ = 0

Ψ = ψL(x)fL(y) + ψR(x)fR(y)
γ5ψL,R = ∓ ψL,R

f (0)
L (y) ∼ e− ∫y m(ȳ)dȳ = sech(y)

f (0)
R (y) ∼ e ∫y m(ȳ)dȳ = cosh(y)

m(y) ∼ tanh(y)

This is known as Jackiw-Rebbi
mechanism in condense 

matter physics.
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Typical domain wall profile

m(y) ∼ tanh(y)
Main idea:

“Position-dependent coupling”

ℒ = − m′�(y)2FMNFMN

Ay = 0 Aμ =
aμ(x)f(y)
2m′�(y)

(−∂2
y +

m′�′�′�(y)
m′�(y) )f (n) = μ2

n f (n)

f (0) ∼ m′�(y) ⇒ A(0)
μ (x, y) ∼ a(0)

μ (x)

Bulk gauge bosons 
condensate on the 

domain wall.
Massless mode is 

guaranteed by Index 
theorem?

Effective gauge couplings 
do not depend on details!

∫ dy Ψ̄AμΨ ∼ ∫ dy(f (0)
L )2 = 1

hep-th:1801.02498

hep-th:1811.08708
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dependent mass or coupling ideas (the latter is more robust, see  
hep-th\1811.08708).
Therefore, we have all the ingredients for the standard model!
Essentially the same results applies to other solitons, e.g. vortices, 
monopoles …
What brane-worlds have/can ever done for us? 

SM bugfixing/enhancements:
gauge hierarchy problem

fermion generations problem 
 grand unification+geometric Higgs mechanism

SUSY breaking 
seesaw, …. hep-th:1703.00351
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THE GOAL OF OUR WORK
is to find minimal but realistic model with a single extra-

dimension and a domain wall on which  SM arise as an effective 
four-dimensional low-energy theory.

In our model, the Higgs:
•  spontaneously breaks SM gauge group from SU(2)xU(1)Y to U(1)em

• gives mass to W and Z bosons and fermions via Yukawa magic
• provides a localization mechanism for gauge fields.

At the same time, a large gap between EW and 5D energy scales 
emerges naturally and protects low-energy physics from 

phenomenologically self-terminatory effects coming from extra 
dimensions.



SM AT THE CRITICAL POINT

Ω < λvΩ > λv

SM lives here!

Ω = λv
T = v tanh(vλy)
H = 0

T = v tanh(Ωy)
H = v̄ cosh−1(Ωy)

In our model, the domain wall has two phases which are separated 
by a critical point in the parameter space, where the Higgs doublet 

obtains a non-trivial background.

This facilitates spontaneous symmetry breaking of SM gauge group but 
it also provides position dependent gauge coupling for gauge 

fields and renders the mass of the electroweak monopole finite.



A TOY MODEL
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Let us illustrate how it works on a simple U(1) theory: 

The domain wall has a Higgs condensation above the threshold: 

Slightly above the critical point, the Higgs has a nearly massless mode:



ARBITRARY LARGE MASS GAP

Ω ε ≡ v2λ2 − Ω2 ∼ μ ∼ 102 GeV

5D parameters

[Ω] = 1 [vλ] = 1 [μ] = 1 [η, η̃, χ] = − 1/2
Wall thickness phase II wall thickness phase I 5D gauge coupling Yukawas

effective 4D parameters

mA = 2μ vh =
2 Ω

λ ε mh = 8
3 Ω ε e =

2μ
vh

gauge bosons mass Higgs VEV Mass of the Higgs 4D gauge coupling

Ω ∼ λ−2 ∼ v
2
3 ∼ η−2, η̃−2, χ−2 ≥ 103 GeV

Mild fine-tuning gives an arbitrary large mass gap



SMOKING GUNS OF OUR MODEL
Production channel for KK quarks via NG boson Y

∫
∞

−∞
dy iΨ̄ΓMDMΨ ⊃ iα

Ω
v

∂μY (ψ̄ (1)
L γμψ (0)

L − ψ̄ (0)
L γμψ (1)

L )

T = v tanh (Ωy −
1
fY

Y(x)) H =
Ω
2

H(x) sech (Ωy −
1
fY

Y(x))

New tree-level diagram for h → γγ

H = v̄ (1 +
2h(x)
vh ) sech Ωy .

−∫
∞

−∞
dy |β |2 (ℱMN)2 = −

1
4 (1 + 2

2h
vh

+
2h2

v2
h )(F(0)

μν )2 .



MONOPOLE MASS
In SM the mass of the Cho-Maison monopole is divergent.

We can regularize it by assuming non-canonical kinetic term for U(1)Y.
In our model, this regularization is a byproduct of localization of

SM gauge fields on the domain wall.

ϵ1 = 5 ( H
vh )

8

− 4 ( H
vh )

10

EMY proposal:

β2 =
|H |2

μ2 (10
|H |6

v̄6
− 9

|H |8

v̄8 )Our model:

−∫
∞

−∞
dy β2(ℬμν)2 = −

ϵ1

4
(B(0)

μν )2
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