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Physics interest of Heavy lon WG

Pb+Pb, Xe+Xe collisions:
— Hot, deconfined QCD matter — QGP (collective /
non-perturbative aspects of strong interaction, similar
ot to matter in early stages of the universe)
Pb Pb — Ultra-peripheral collisions (em. processes, growing
program)

p+Pb collisions:
— nuclear modifications of PDFs, initial state of
Pb+PDb collision
Pb — QGP in small systems?, collectivity in hadronic
collisions
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p+p collisions:
i — reference for Pb+Pb and p+Pb
— QGP in small systems?, collectivity in hadronic collisions



Centrality

Central collisions: high-
chance to create de-
confined matter — quark
gluon plasma (QGP)

Peripheral collisions:
QGP likely not created

*It is not possible to directly measure the impact parameter. The degree of
overlap of two colliding ions is quantified by a measure called centrality.

*Centrality is based on information from FCal or forward detectors.

*Centrality is expressed in percentiles (e.g. 0-10% refers to the 10% of the
most central collisions; 80-100% is 20% of the most peripheral collisions)



Inclusive jets: Ra
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* Nuclear modification factor quantifies the magnitude of the jet
suppression in Pb+Pb collisions wrt pp collisions.

*If there was no modification of the jet yield in heavy-ion collision,

then Ry, = 1.



Inclusive jets: Ra
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Jet quenching is a very significant phenomenon present
even at the TeV scale!



Inclusive jets: Ra
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 Central collisions = large N, — small R4 = significant suppression
e Peripheral collisions = small N, — Raa Nearly unity = minimal suppression



Going Inside jets

Q: Jets are suppressed. Is the internal structure of the jet modified?




Fragmentation functions
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Namely: enhancement at low z and high
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gmentation functions —
basic understanding

Lost energy goes
to soft particles
and/or “back-
reaction” of
medium to jet

One of possible
explanations:
Flavor effect
(gluon jets are

suppressed more
than quark jets)
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Reference: Fragmentation in p+Pb

1 4-ATLAS y * 1<1.6
C 110 <p < 160 GeV

1.2F

e No modification with
respect to pp observed.

e Modifications seen in
Pb+Pb do not come from
initial state effects
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1/0 do/dg

Some of what we can learn ...

e MLLA is successful, speaks

e'e _
% LEP 206 GeV in favor of local parton-
* LEP 189 GeV I
L 1P 193 oV hadron duality (LPHD).
[ O LEPS1GeV e More modern and precise
¥ TOPAZ 58 GeV .
0 TASSO 44 GeV calculations (e.g. SCET) are
[ A TASSO35GeV less successful (!).
- A TASSO 22 GeV . ] _
DIS: e | ongitudinal fragmentation

H1"  100-8000 GeV?
ZEUS  80-160 GeV*
" 40-80 GeV”
H1®  12-100 GeV?
ZEUS' 10-20 GeV’ _t

functions are simple to
model, but e.g. transverse
structure or jet periphery is
hard to get by pQCD.

e => Hadronization is more
than LPHD & fragmentation

o[ @ X
[~
I
=
!

“Hump backed

plateau” IS non-trivial.
oo Tas e Placing these processes into
B B R *E;lmgﬁ%w & the medium of well defined
e=In(1/x) space-time scales should
p

Improve the understanding.
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Many other suppression
measurements
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e Strong suppression of charmonia ...
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similar to that of the suppression of

jets => some universality? See e.g. PLB 767 (2017) 10.

e Again, this may tell us something not only about QGP, but also about
the mechanism of charmonia production which is not understood.
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Many other suppression
measurements ...

e Not many more measurements on charmonia
e Many more measurements on jets:
- Dijet and gamma jet asymmetry measurements
- Gamma-jet fragmentation
- Large angle fragmentation
- Azimuthal dependence of energy loss
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Can we trust these suppression
measurements?
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Reminder: jet Rax
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 Central collisions = large N, — small R4 = significant suppression
e Peripheral collisions = small N, — Raa Nearly unity = minimal suppression



Electro-weak probes:
v, Z & W bosons

ATLAS Prellmlnary e Glauber v2.4
Pb+Pb 0. 49 nb O | Glauber v3.2

, 25
V \fESUZTeV O og

==== MC isospin —
MC isospin, Glauber v3.2 ]

¢ ® T
100 200 300 400
<Npart>

e Ry, Of Z and W is unity (modulo isospin) => we understand the geometry.

e Some small deviation from unity => information about high-energy nuclear
structure: nuclear-PDFs, neutron skin-effect, ...

e \We can trust suppression measurements — we have data-driven checks.
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Flow phenomenon
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e Flow = characteristic modulation of particle production in azimuth,
visible by eye!

e |If the heavy-ion collision was just a superposition of pp collisions =>
no azimuthal modulation would be seen.



Flow phenomenon

out-of-plane

Larger pressure Reaction z f
grandients in the direction plane
of reaction plane (in-plane) (\IIR)\

=>

Larger particle production
In-plane compared to
out-of-plane

in-plane

Drawing by
M/ Kaneta

—
X (defines W)

e Characterization using Fourier expansion in A¢ wrt reaction plane:

(é_j; — No(l + 2v9 cos 2(¢p — @RP)) vy = <COS 2(¢ — (DRP)>

e Here just first term in the expansion = elliptic flow (v,).

e Good description by relativistic hydrodynamics ... allows extracting
parameters such as viscosity-over-entropy ratio.
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Flow In Pb+PDb
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e Precision measurement of v, — v, => more insight into the fluctuating
anisotropic initial state.

e Characteristic shape predicted by rel. hydrodynamics up to 4 — 6 GeV.

e v, at high-p; due to path length dependent energy loss
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Central collisions:

smaller v, due

smaller initial
eccentricity

e Precision measurement of v, — v, => more insight into the fluctuating
anisotropic initial state.

e Characteristic shape predicted by rel. hydrodynamics up to 4 — 6 GeV.

e v, at high-p; due to path length dependent energy loss
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Flow N Pb+Pb

& 035 ATLAS Pb+Pb, 0.49 nb’” +n _, 7} Very central
~ I VSyy = 5.02 TeV collisions
>0.25 Fn=3 => v, smaller
0.2 n=4 than higher order
flow which is
0.15 fin=s

driven by

fluctuations

20 30 60
p_ [GeV]

e Precision measurement of v, —
anisotropic initial state.

e Characteristic shape predicted by rel. hydrodynamics up to 4 — 6 GeV.
e v, at high-p; due to path length dependent energy loss

Vv, => more insight into the fluctuating
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But flow Is also In smaller systems!
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e Obviously, zero flow in MC generators (Pythia, Hijing) (not shown).
e But flow of comparable magnitude also in p+Pb collisions and high-
multiplicity p+p collisions!

e |s the deconfined matter created in p+p and p+Pb? Or is the flow some
universal pQCD phenomenon? Or one observable but two different
physics mechanisms behind? 24



Re-analysis of LEP data

e To move forward in addressing the pQCD part, CMS people re-analyzed
open LEP data.

e No sign for “ridge” (= long-range azimuthal correlations) <=> no evidence
for flow in e+e- collisions.
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Ultra-peripheral collisions

-
Y
<
44
@)

V;:_C : @

*Boosted protons / nuclei are source of photons of small virtuality
(Q*<1/R?=103GeV?) described using equivalent photon
approximation.

*Electromagnetic interactions dominate at large impact parameters.
*Pb+Pb & UPC turn LHC into photon-photon collider!
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Ultra-peripheral col one of processes:

light-by-light scattering

p,Pb p.Pb
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*Boosted protons / nuclei are source of photons of small virtuality
(Q*<1/R?=103GeV?) described using equivalent photon
approximation.

*Electromagnetic interactions dominate at large impact parameters.
*Pb+Pb & UPC turn LHC into photon-photon collider!
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Light-by-light scattering

p,Pb p.Pb
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*First evidence for light-by-light scattering by ATLAS in 2017

*No direct observation before, only:
— In g-2 of muons and electrons
— In Delbruck scattering (= photon scattering in Coulomb field of a
nucleus)
— Not (yet) observed in vacuum birefringence (= photon splitting
In a strong magnetic field)



Light-by-light scattering

Nat. Phys. 13 (2017) 852 arXiv: 1904.03536
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8 - - - [CICEP gg — vy .
- no Aco requirement - 25 — T =
6 ] 20f— BE Sys. unc. _f
A 2015 N 155 * 2018 E
- ] 10 =
2 ] - ]
- 1 5 —
R I IR L e et ﬁ&.--::- G | ol .

00 0.01 0.02 003 004 00 0.06 % 001 002 003 0. 0.08
vy acoplanarity A,

* Event selection: 2 photons: E1>6 GeV, [n|<2.37, my, > 6 GeV,
PTyy < (1)2 GeV, Aco = (1-A¢/x)<0.01; no tracks

*2015: 13 events (2.6 expected bkgr), 4.4 ¢ significance
*2018: 59 events (12 expected bkgr), 8.2 o observation
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What else can be done
with “yy-LHC”?

*Quite a lot of things, one of them is the measurement of flow ...
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*Flow in y+Pb collisions ?!?
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What else can be done
with “yy-LHC”?

*Quite a lot of things, one of them is the measurement of flow ...

od IIII|IIII|IIII|IIII|IIII|IIII|II

= 0 16:— 2 pp (s=13TeV  ATLAS Preliminary_: *Flow in y+Pb collisions ?!?
= 0 PePD [syy=5.02 TeV *In the vector meson
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What else can be done
with “yy-LHC”?

*Quite a lot of things, one of them is the measurement of flow ...
* Another one is measurement of nuclear-PDFs in a new regime ...

*But also BSM searches, e.g. axions or monoples ...
r . "R T T L T I
|
= LEP
Lapy = —aF™Fy = ~aE-B &
ayy — —I-e'q'!uﬂ HY — Eﬂ < < Y =y + inv. LEP
10D‘e+e‘—ry+inv. o . -
Pb Ze Pb exisling constraints from ]
P P JHEP 1712 (2017) 044
v ATLAS 2016
ﬁ_{ 107" | E
gl .
- - ﬁTLA?DSwQuIlahon
ol
Pb Ze Pb 1072 Beam-dump E
10° 102 10" 109 10" 102  10°
m; [GeV]

* Axion-like particles (ALP): scalar or pseudoscalar particles that
couple to EM fields ... m,, limits 1/A coupling.
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Probing electromagnetic
degrees of freedom of QGP

Electromagnetic field

V + 600 T | T I T T T T T T
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TR 1 B —>80%data
= 1y 7
12 { 1L STARIlight + ]
:f * + + + 1 F 4 data overlay
- B . B +
. i L * i
M (}_____*_*_It.*-i—t+|4—*—+-¢-:- _____*_*_ll-m----!--t---
L L L L | L | L
0 0.005 0,01 0.015 0 0.005 0.01 0.015
’ _% ”
™ — |
- - - - {I E ] o
*Dimuons from electromagnetic interaction &

penetrating through QGP
* Modification of acoplanarity distribution in central collisions
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Probing electromagnetic
degrees of freedom of QGP
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*Dimuons from electromagnetic interaction
penetrating through QGP

* Modification of acoplanarity distribution in central collisions
* About 70 MeV k; deflection

0.015
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Probing electromagnetic
degrees of freedom of QGP
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*Dimuons from electromagnetic interaction
penetrating through QGP

* Modification of acoplanarity distribution in central collisions
* About 70 MeV k; deflection ... compare with > 1 GeV for parton

energy loss
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Heavy-ion WG of ATLAS

*HI WG produced ~20 papers over
the last 2 years + about 20 papers
| CONF expected to come before

Quark Matter 2019

*HI WG is (among) the most productive

groups per “OTP capita”

(e.g. HI: ~50 papers by ~50 people,
EXQOT: 170 papers by 630 people)

ATLAS - Papers/Lead-group
BPHY

ION

[ EXOT 3 HIGG = HION
= sTDM EE TOPQ I BPHY
3 susY = PERF B TCAL

18.5
> 14

—> 72

—— Most popular paper
— H-index

Average # published citations (no self)

BPHY EXOT HIGG HION STDM SUSY TOPQ

333 904 415 202 402 191
N .
42 42 22 31 43 25
. - -

229 4308 319 126 223 92
. '



Heavy-ion WG of ATLAS

*HI WG produced ~20 papers over ATLAS - Papers/Lead-group
the last 2 years + about 20 papers BPHY . on

| CONF expected to come before
Quark Matter 2019

*HI WG is (among) the most productive
groups per “OTP capita”
(e.g. HI: ~50 papers by ~50 people,
EXQOT: 170 papers by 630 people)
*Diverse physics program: soft-QCD
physics, jets, quarkonia, vector bosons,
top-quark measurement, UPC collisions and little of BSM

*Diverse datasets: pp, p+Pb, Xe+Xe, Pb+Pb ... and negotiating O+O and
pP+0O collisions

* Allows for diverse physics and technical experience: inputs to planning of
LHC running, work on data-preparation, trigger, simulation infrastructure

You are welcome to join!



