o= Axolee =

Fayoum University

Introduction to Root program:L1

Presented by
DR. MOHAMMED ATTIA MAHMOUD

=PhD, Fayoum University, Egypt and Antwerp University, Belgium. C\M\S .
-Researcher in ENHEP, ASRT, Fayoum Uni, and BUE. Y
-FSQ Gen-Contact, CMS experiment, CERN, Geneva, Switzerland. | - \\

s
‘ - \
| | i
1 |

Outline

> ROOT in a Nutshell
» The ROOT Libraries

> ROOT: An Open Source Project

> ROOT: a Framework and a Library
» ROOT Application Domains
> CINT Interpreter

> Examples

N
ROOT in a Nutshell

» The ROOT system is an Object Oriented framework for large scale
data handling applications. It is written in C++.

» Provides, among others,

v an efficient data storage and access system designed to support
structured data sets (PetaBytes)

a query system to extract data from these data sets
a C++ interpreter

advanced statistical analysis algorithms (multi dimensional
histogramming, fitting, minimization and cluster finding)

scientific visualization tools with 2D and 3D graphics
an advanced Graphical User Interface

» The user interacts with ROOT via a graphical user interface, the
command line or scripts

» The command and scripting language is C++, thanks to the embedded
ICINdT ((j:++ interpreter, and large scripts can be compiled and dynamically
oade

» A Python shell is also provided.

Introduction to ROOT r

vV i XXX

The ROOT Libraries

Base | cont|meta] z1P | uni]me|vet] - g

Root CORE Classes

Physics Geom Matrix Hist Tree Rint_| R
EG Quadp \
:I) Graf |« °

EGPythia |
[]
L [CeomPainer] —
G3_vmc GPad

F 3

Over 1500 classes

1,550,000 lines of
code

CORE (8 Mbytes)
CINT (2 Mbytes)

Green libraries linked
on demand via plug-
in manager (only a
subset shown)

100 shared libs

[MLP | |[Proof | | Table Hbook .
Thread ” Aslmage
Gui Ruby | PyROOT

All libs need Core

Arrows show lib dependencies
CINT can be used independently
Green libs loaded by PluginManager

]WH GX11 ||Gx11TTF| GQt | New |

Introduction to ROOT

S
ROOT: An Open Source Project

 The project was started in 1995.

 The project is developed as a collaboration between:

— Full time developers:
e 11 people full time at CERN (PH/SFT)
e +4 developers at Fermilab/USA, Protvino , JINR/Dubna (Russia)

— Large number of part-time contributors (155 in CREDITS file)
— Along list of users giving feedback, comments, bug fixes
and many small contributions
e 2400 registered to RootForum
* 10,000 posts per year
 An Open Source Project, source available under the LGPL
license

Introduction to ROOT

S
ROOT: a Framework and a Library

e User classes

.)] This is the normal
— User can define new classes interactively operation mode

— Either using calling API or sub-classing API

— These classes can inherit from ROOT classe

Interesting feature
for GUIs &
event displays

 Dynamic linking

— Interpreted code can call compiled code

Script Compiler
X file.C++

— Compiled code can call interpreted code

— Macros can be dynamically compiled

Introduction to ROOT

ROOT Application Domains

‘I = Q) : .
((-2 --\\ Data Analysis & Visualization
{\ /l/[/ -- -

b AOD & Tag Evont
- Reconstruction Bullders i Selection

Data Storage: Local, Network

Introduction to ROOT

S 0
Three User Interfaces

_ GUI
o R windows, buttons, menus
Interface Command line
(4] CINT (C++ interpreter)
Command Line Macros, applications,
'[fgﬁ_ﬁrefef libraries (C++ compiler and
e interpreter)

Introduction to ROOT

CINT Interpreter

CINT in ROOT

e CINT is used in ROOT:
— As command line interpreter
— As script interpreter
— To generate class dictionaries

— To generate function/method calling stubs
— Signals/Slots with the GUI

e The command line, script and programming
language become the same

e Large scripts can be compiled for optimal
performance

Introduction to ROOT

Running Code

B
To run function mycode() in file mycode.C:

root [O] .x mycode.C

Equivalent: load file and run function:

root [1] -L mycode.C
root [2] mycode()

All of CINT's commands (help):
root [3] .h

Introduction to ROOT

Running Code

B
To run function mycode() in file mycode.C:

root [O] .x mycode.C

Equivalent: load file and run function:

root [1] -L mycode.C
root [2] mycode()

All of CINT's commands (help):
root [3] .h

Introduction to ROOT

Histograms

Making your first histogram:

» Histograms can be 1-d, 2-d and 3-d

» Declare a histogram to be filled with floating point numbers:

TH1F *histName = new TH1F(“histName”, “histTitle”, num_bins,x_low,x_high)
» 2-d and 3-d histograms can be booked similarly...

TH1F *my_hist = new TH1F(“my_hist”, “My First Histogram”, 100, 2, 200)

TH2F *myhist = new TH2F(“myhist”, “My Hist”, 100, 2, 200, 200, 0,500)

.

Drawing Histograms

> To draw:
my_hist->Draw();

» To fill a histogram:
my _hist->Fill(50);
my_hist->Fill(100, 3); // the number 100 has weight=3

my hist = new THIF ("wy hist", "My First Histograw", 100, 2, 200);

> Update the hiStOgram: ”:‘ 17as . | created default TCanvas with name cl
my _hist->Draw s e

» Change line color: [é] g hist
my_hist->SetLineColor(2); //red
or my_hist->SetLineColor(kRed); — my_hist->Draw();

File Edit View Options Inspect Classes

| My First Histogram | my_hist
Entries 2
= Mean 87.5
3 RMS ___ 21.65
2.5
21
1.5
1=
05 COLORS ——
n:l L1 I L1 1 I 1 1 I L1 1 I L1 1 I L1 1 I L1 1 I L1 1 I L1 1 I L1 1
20 40 100 180 200

Black

Red

Light
green

Blue

Magenta

Cyan

Green

Legends

We want to move towards being able to compare two or more histograms by plotting them on
the same axes. In order to do this we need two more skills - one is to be able to plot histograms
with different colours, and the other is some sort of information on which histo is which. The
latter is done with a "legend". Use the following code to add a legend to your histogram:

leg = new TLegend(0.6,0.7,0.89,0.89); //coordinates are fractions //of pad dimensions
leg->AddEntry(hist_1,"First histo","I"); // "I" means line // use "f" for a box

leg->Draw(); // oops

we forgot the header (or "title") for the legend

leg->SetHeader("The Legend Title");

leg->Draw();

leg->SetTextSize(0.04); // set size of text

leg->SetFillColor(0); // Have a white background

leg->AddEntry(hist_1, "text 1", "p"); // p shows points, // other options exist // (Check

documentation)

leg->Draw();

Comparing Histograms

To illustrate how to plot two histograms on the same canvas, we will need to set up
another histogram:

TH1F *hist_2 = new TH1F("hist_2", "Another histo", 100, 2, 300);

Let's fill a few bins:

hist_2->Fill(20,10);

hist_2->Fill(50,4);

hist_2->Fill(3);

hist_2->Draw();

hist_1->Draw("same");
hist_1->SetLineColor(8); // green
hist_2->SetLineColor(4); // blue
hist_2.Draw(); //draw hist_2 first as it has a larger range
hist_1.Draw("same");

leg_hist = new TLegend(0.5,0.6,0.79,0.79);
leg_hist->SetHeader("Some histograms");
leg_hist->AddEntry(hist_1,"First histo","l");
leg_hist->AddEntry(hist_2,"Second histo","l");
leg_hist->Draw();

Copying Histograms
You can make an identical copy of a histogram by cloning,
TH1F *hist_new=(TH1F*)hist_1->Clone(); hist_new->SetName("hist_new");.

More Drawing Options
Here are some Draw options that you might like to experiment with for a 2-
dimensional histogram:

h2->Draw("text");
h2->Draw("col"),

h2->Draw("colz");
h2->Draw("box");
h2->Draw("surf");

Including Error Bars in Histograms

You can plot errors on histograms (perhaps more appropriate to plot them on first to
histograms!) by entering

hist_2.Draw("esame");

By default, errors are sqgrt(entries).

Saving Histograms

Saving Histograms as Image Files
Now save your masterpiece to a file (this assumes that your histogram is printed on canvas
llclll):

cl->SaveAs("myimage.eps");

cl->SaveAs("myimage.ps");

c1->SaveAs("myimage.qgif");

Saving Source Code for Histograms
cl->SaveAs("'myimage.C");

you can recreate the histogram in exactly the form that you saved it in a brand new ROOT
session by entering:

X myimage.C

	Introduction to Root program:L1
	Outline
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20

