


1. Declaration can be omitted

f = new TFile("Example.root")

2. "." notation rather than "->"
f.ls()

3. Search  for an object by its name

TH1F *smallHisto = new TH1F

("small","fPx 100",100,-5,5);

small->Draw();

Warning: These will not work in compiled code!



• [expression] evaluates the expression
root[3] 3*4

(int)12

• .files  show loaded source files

• .class [name] show class definition

• .g prints all objects in the root session

• .ls ls on current directory

• .pwd list the current directory, canvas, 
and style.



To inspect your ROOT histogram enter:

TFile f("myHistogram.root");

This will loads the contents of the root file myHistogram.root into a temporary file in your ROOT 

session called "f".

To look at the contents of this file, enter:

f.ls(); 

You should see a response like:

TFile** myHistogram.root Created for you by RooTupleManager

TFile* myHistogram.root Created for you by RooTupleManager

KEY: TH1F h1d1;1 MC reco abs mtm difference

KEY: TH1F h1d2;1 Reco track momentum 

KEY: TH1F h1d3;1 Tracks per Event 

KEY: TH1F h1d4;1 Momentum 

KEY: TH1F h1d5;1 TagInspector Status

you can add entries to bins in the histogram and redraw the output

when you redraw the file:
h1d4.Fill(2,4); 

h1d4.Draw();



• Un-named Script: hello.C
{

cout << "Hello" << endl;

}

• Named Script:say.C
void say(char * what = "Hello")

{

cout << what << endl;

}

• Executing the Named Script
root [3] .x say.C

Hello

root [4] .x say.C("Hi there")

Hi there



• Function Objects (TF1)

– Three constructors for TF1

– User Defined Functions

• Fitting

– Fit()

– Fitting with a user defined function

– Fitting subranges and combining functions

– Demonstration of background and signal 
function



1. A C++ like expression using x with a fixed set of 
operators and functions defined in TFormula
TF1 *f1 = new TF1("f1","sin(x)/x",0,10);

f1->Draw();

TF1 *f2 = new TF1("f2","f1 * 2",0,10);

• Creating your own function objects
– TF1, TF2, TF3
– Three Signatures for the TF1 constructor



2. Same as the previous TF1  with Parameters 
Call the constructor with parameter indices

TF1 *f1 = new TF1

("f1","[0] *x*sin( [1] *x)",-3,3);

See TFormula for valid expressions

Set the parameters explicitly

f1->SetParameter(0,10);

f1->SetParameter(1,5);

f1->Draw();




