

• Common Input/output functions
– cin

• Standard input stream

• Normally keyboard

– cout

• Standard output stream

• Normally computer screen

– cerr

• Standard error stream

• Display error messages

• Before writing the programs

– Comments

• Document programs

• Improve program readability

• Ignored by compiler

• Single-line comment
– Use C’s comment /* .. */ OR Begin with // or

– Preprocessor directives

• Processed by preprocessor before compiling

• Begin with #

• 1 // Fig. 1.2: fig01_02.cpp
• 2 // A first program in C++.
• 3 #include <iostream>
• 4

• 5 // function main begins program execution
• 6 int main()
• 7 {
• 8 std::cout << "Welcome to C++!\n";
• 9

• 10 return 0; // indicate that program ended successfully
• 11

• 12 } // end function main

Single-line comments.

Preprocessor directive to include

input/output stream header file
<iostream>.Function main appears exactly

once in every C++ program..

Function main returns an

integer value.

Left brace { begins function

body.

Corresponding right brace }

ends function body.

Statements end with a semicolon

;.

Name cout belongs to

namespace std.

Stream insertion operator.

Keyword return is one of

several means to exit function;
value 0 indicates program

terminated successfully.

6

fig01_06.cpp
(1 of 1)

1 // Fig. 1.6: fig01_06.cpp
2 // Addition program.
3 #include <iostream>
4

5 // function main begins program execution
6 int main()
7 {
8 int integer1; // first number to be input by user
9 int integer2; // second number to be input by user
10 int sum; // variable in which sum will be stored
11

12 std::cout << "Enter first integer\n"; // prompt
13 std::cin >> integer1; // read an integer
14

15 std::cout << "Enter second integer\n"; // prompt
16 std::cin >> integer2; // read an integer
17

18 sum = integer1 + integer2; // assign result to sum
19

20 std::cout << "Sum is " << sum << std::endl; // print sum
21

22 return 0; // indicate that program ended successfully
23

24 } // end function main

Declare integer variables.

Use stream extraction

operator with standard input

stream to obtain user input.

Stream manipulator
std::endl outputs a

newline, then “flushes output

buffer.”

Concatenating, chaining or

cascading stream insertion

operations.

Calculations can be performed in output statements: alternative for

lines 18 and 20:

std::cout << "Sum is " << integer1 + integer2 << std::endl;

Getline() To get an entire line from cin,

there exists a function, that takes the
stream (cin) as first argument, and the
string variable as second

• Variable names
– Correspond to actual locations in computer's memory
– Every variable has name, type, size and value
– When new value placed into variable, overwrites

previous value

– std::cin >> integer1;
– Assume user entered 45

– std::cin >> integer2;
– Assume user entered 72

– sum = integer1 + integer2;

integer1 45

integer1 45

integer1 45

integer2 72

sum 117

• Arithmetic calculations

– * : Multiplication

– / : Division

• Integer division truncates remainder
– 7 / 5 evaluates to 1

– % : Modulus operator returns remainder
– 7 % 5 evaluates to 2

Operator(s) Operation(s) Order of evaluation (precedence)

() Parentheses Evaluated first. If the parentheses are nested, the

expression in the innermost pair is evaluated first. If

there are several pairs of parentheses “on the same level”

(i.e., not nested), they are evaluated left to right.

*, /, or % Multiplication Division

Modulus

Evaluated second. If there are several, they re

evaluated left to right.

+ or - Addition

Subtraction

Evaluated last. If there are several, they are

evaluated left to right.

• if structure
– Make decision based on truth or falsity of condition

• If condition met, body executed
• Else, body not executed

• Equality and relational operators
– Equality operators

• Same level of precedence

– Relational operators
• Same level of precedence

– Associate left to right

• using statements
– Eliminate use of std:: prefix
– Write cout instead of std::cout

Standard algebraic
equality operator or
relational operator

C++ equality
or relational
operator

Example
of C++
condition

Meaning of
C++ condition

Relational operators

> > x > y x is greater than y

< < x < y x is less than y

 >= x >= y x is greater than or equal to y

 <= x <= y x is less than or equal to y

Equality operators

= == x == y x is equal to y

 != x != y x is not equal to y

&& OPERATOR (and)

a b a && b

true true True

true false false

False true false

False false False

|| OPERATOR (or)

a b a || b

true true true

true false true

false true true

false false false

1
2

((5 == 5) && (3 > 6)) // evaluates to false (true && false)
((5 == 5) || (3 > 6)) // evaluates to true (true || false)

