

The conditional operator evaluates an expression, returning one value
if that expression evaluates to true, and a different one if the
expression evaluates as false. Its syntax is:

condition ? result1 : result2

If condition is true, the entire expression evaluates to result1, and
otherwise to result2.

2
3
4
5
6
7
8
9

10
11

// conditional operator
#include <iostream>
using namespace std;
int main ()
{
int a,b,c;
a=2;
b=7;
c = (a>b) ? a : b;

cout << c << '\n';
}

7

The if keyword is used to execute a statement or block, if, and only
if, a condition is fulfilled. Its syntax is:

if (condition) statement;

1
2

if (x == 100)
cout << "x is 100"; If x is not exactly

100, this statement
is ignored, and
nothing is printed.if (x == 100) { cout << "x is "; cout << x; }

if (condition) statement1
else statement2;

1
2
3
4

if (x == 100)
cout << "x is 100";

else
cout << "x is not 100";

1
2
3
4
5
6

if (x > 0)
cout << "x is positive";
else if (x < 0)

cout << "x is negative";
else
cout << "x is 0";

6

Loops repeat a statement a certain number of times, or while a
condition is fulfilled.

They are introduced by the keywords while, do, and for.

The while loop
The simplest kind of loop is the while-loop. Its syntax is:

while (expression) statement

The while-loop simply repeats statement while expression is true.
If, after any execution of statement,
expression is no longer true, the loop ends, and the program

continues right after the loop. For example, let's have a look at
a countdown using a while-loop:

(prints the value
of n and
decreases n by 1)

The do-while loop is also called exit control loop because, in do-while loop,

compiler will 1st execute the statements, then check the condition, whether it is

true or false.

The for loop is designed to iterate a number of times. Its syntax is:

for (initialization; condition; increase) statement;

1.initialization is executed. Generally, this

declares a counter variable, and sets it to
some initial value. This is executed a single
time, at the beginning of the loop.

2.condition is checked. If it is true, the loop

continues; otherwise, the loop ends,
and statement is skipped, going directly to step

3.
3.statement is executed. As usual, it can be

either a single statement or a block enclosed
in curly braces { }.
4.increase is executed, and the loop gets back to

step 2.
5.the loop ends: execution continues by the next

statement after it.

10

int main()

{

int i=0,j;

cout << i << endl;

for (i = 1; i < 5; i++)

{

cout << "loop in :: " << i << endl;

for (j = i; j < 3; j++)

{

cout << "\t inner for loop j :: " << j

<< endl;

}

cout << "loop end :: " << i << endl;

}

cout << i << endl;

return 0;

}

