-~ o

=72 \//
ot Axo bl
Fayoum University

Introduction to C++ Programming: Lecture 4

Presented by
DR. MOHAMMED ATTIA MAHMOUD

=PhD, Fayoum University, Egypt and Antwerp University, Belgium. C\M\S .
-Researcher in ENHEP, ASRT, Fayoum Uni, and BUE. g <
-FSQ Gen-Contact, CMS experiment, CERN, Geneva, Switzerland. | - \\

S |

Arrays

An array is a collection of values that have the same
data type, e.g.

— A collection of int data values or

— A collection of bool data values

We refer to all stored values in an array by its name

If we would like to access a particular value stored in
an array, we specify its index (i.e. its position relative
to the first array value)

— The first array index is always O

— The second value is stored in index 1
— Etc.

Examples Using Arrays

* Initializing arrays
— For loop
* Set each element

— Initializer list
» Specify each element when array declared
intn[51 ={1, 2, 3, 4, 5 };
* If not enough initializers, rightmost elements 0
* If too many syntax error
— To set every element to same value
int n[5] ={ 0 };
— If array size omitted, initializers determine size
int n[] = {1, 2, 3, 4, 5 };
* 5initializers, therefore 5 element array

// Fig. 4.3: fig04_03.cpp
// Initializing an array. Element value
#include <iostream> (1) g
using std::cout; 2 0
using std::endl; 3 0
4 0
#include <iomanip> 5 0
6 0
using std::setw; Z g
Declare a 10-element array 9 0
int main() of integers.
{
intn[10]; // nis an array of 10 integers
// initialize elements of array-rt60 Initialize array to 0 using a for loop. Note that the array

for (inti=0; i <0 ++) has elementsn[0] ton[9].

n[i]=0; //setelement atlocationitoO

cout << "Element" << setw(13) << "Value" << endl;

// output contents of array n in tabular format
for(intj=0;j<10;j++)
cout << setw(7) <<j<<setw(13)<<n[j]<<endl

return 0; // indicates successful termination
}// end main

© 00 N O O WN P

el ol
w N P o

14
15
16
17
18
19
20
21
22
23
24
25

// Fig. 4.4: fig04_04.cpp
// Initializing an array with a declaration.
#include <iostream>

using std::cout;
using std::endl;

#include <iomanip>

using std::setw;

int main()

{

Note the use of the initializer list.

Element
0

oo NV D WDN P

Value
32
27
64
18
95
14
90
70
60
37

// use initializerist to initialize array n
intn[10]={32, 27, 64, 18, 95, 14, 90, 70, 60, 37 };

cout << "Element" << setw(13) << "Value" << end|l;
// output contents of array n in tabular format
for(inti=0;i<10;i++)

cout << setw(7) <<i<<setw(13)<<n[i]<<endl

return 0; // indicates successful termination

}// end main

Conditional ternary operator (?)

T
 The address operator (&) returns the memory address of a

variable.

amount

|

|] |

1200 1201 1203

// This program uses the & operator to determine a variable’s
// address and the sizeof operator to determine its size.

#include <iostream.h>

volid main (void)

{

int x = 25;

cout << "The address of x is " << &x << endl;

cout << "The size of x is " << sizeof(x) << " bytes\n";
cout << "The value 1n x is " << x << endl;

The address of x is 0x8f05
The size of x is 2 bytes

The value in xis 25

Conditional ternary operator (?)

A pointer is a variable that holds a memory address. That'’s it.

» This is what the difference in between variable and pointer.
> Pointer holds the address
> Variable holds the value.

Computer memory is divided into sequentially numbered memory locations. Each variable
is located at a unique location in memory, known as its address.

Pointers are useful for the following

Working with memory locations that regular variables don’t give
you access to

Working with strings and arrays
Creating new variables in memory while the program is running

Creating arbitrarily-sized lists of values in memory

T

// This program stores the address of a variable in a
pointer.

#include <iostream.h>

volid main (void)

{
int x = 25;
int *ptr;

ptr = &x; // Store the address of x in ptr
cout << "The value 1n x is " << x << endl;
cout << "The address of x is " << ptr << endl;

otr ‘
The value in xis 25 0x7e00

The address of x is 0x7e00
Address of x:
0x7e00

// This program demonstrates the use of the indirection
// operator.
#include <iostream.h>

void main (void)

{

int x = 25;
int *ptr;

ptr = &x; // Store the address of x in ptr
cout << "Here is the value in x, printed twice:\n";

cout << x << " " << *ptr << endl;

*ptr = 100;

cout << "Once again, here i1s the value in x:\n";
cout << x << " " K *ptr << endl;

|

Here is the value in x, printed twice:
25 25
Once again, here is the value in x:

100 100

