

Data Tiers

Event Data model

CMSSW

Github, LXR

How to write your own analyzer

Configuration file

• Each step in the simulation or reconstruction chain adds an extra layer of information

to the event

MC also has GEN SIM and DIGI

– GEN: generated event (e.g. output from Pythia, Madgraph)

– SIM: Generator level particle objects (inc. gen jets)

– DIGI: Digitised detector output

Dataset names list the tiers they contain, e.g.

– /Neutrino_Pt2to20_gun/Summer12-UpgradeL1TDR-PU100_POSTLS161_V12-

v1/GEN-SIM-DIGI-RAW

 All data is stored in ROOT files as it leaves the HLT

 Each event is stored as an edm::Event object in a TTree

 An edm::Event is a flexible container that contain type arbitrary sets of data

 Everything for RAW to RECO data is stored in the edm::Event

 Each file typically contains ~1000s of events

 Files are grouped into datasets

 For real data, a dataset is

defined by a related set of

triggers

 In MC this means a particular

process, e.g. Z+jets

 Each event is contained in an edm::Event object stored within a ROOT TTree

 Each branch corresponds to an object, or a collection of similar objects, with a

naming convention:

 className_moduleLabel_productInstanceLabel_processName

– e.g. recoMuons_muons__RECO

 moduleLabel: is the label given to the instance of the module that

created the collection

 productInstanceLabel: Another label given to the collection by the

producing module which is empty by default. It should be used in

modules that produce multiple collections of the same type

 processLabel: The name of the process in the job that created the

data, e.g. HLT, RECO

 CMSSW is essentially a single program, cmsRun which loads modules and services

on demand as specified in a configuration file

 You will mostly spend time writing modules which do all the analysis work, although

you will also use services to get information from databases and to produce output

 Each event is passed through a series of modules called a path. A path is an ordered

list of Producer/Filter/Analyzer modules which sets the exact execution order of all

the modules.

 A module is able to both read data from the event and put new data into it.

 New versions of CMSSW are released regularly, with releases denoted

by three numbers in the form CMSSW_X_Y_Z.

 Data and MC samples produced with a particular version must usually

be analysed with the same version (though usually ensuring X_Y is the

same is sufficient)

 The full package is quite large (~10GB), so when you set up a project

 area you only check-out the parts you want to change.

 The software is organised into packages, under the CMSSW_X_Y_Z/src

directory of a release, with the convention: SubSystem/PackageName

 – e.g. HiggsAnalysis/HiggsTauTau, DataFormats/MuonReco

 Each package has a common structure (see next slide)

CMSSW moved from CVS to Git last year

– Not the easiest transition: Git is very powerful but conceptually very different from CVS

• CMSSW repository is here: https://github.com/cms-sw/cmssw

– Some extra CMSSW-specific tools are provided to work the repository:

http://cms-sw.github.io/cmssw

– Mostly needed to emulate the ability to checkout & compile a single package a la CVS

• Good idea to get a github account: https://github.com. Configure global setting on your

machine:

To checkout a package

A CMSSW task is built out a series of modules, which will process each event in turn.

There are three kinds of module (each implemented as a C++ class), each with a

specific function. Your own module should be a class which inherits from one of these

• edm::EDAnalyzer

– An EDAnalyzer examines the event and produces output: histograms, ntuples etc. Note the const

edm::Event in the analyzer method, it isn’t able to modify the event content

• edm::EDProducer

– Generates some new objects and stores them in the event

• edm::EDFilter

– The filter method is used to examine the event, returning false instructs the framework to stop processing the

current event and move to the next one

• As well as the main analyze, produce and filter methods, all modules have a

beginJob and endJob method, the former being called automatically before

processing events and the latter after

 You have to have CERN account, for login to lxplus

ssh –Y OR X username@lxplus.cern.ch

Listing the available CMSSW:

scram list

 Choosing CMSSW By using this command:

cmsrel CMSSW_X_Y_Z

 Apply cms environment :

cmsenv

 First, create a subsystem area. The actual name used for the directory

is not important, we'll use First_analysis.

mkdir First_analysis

cd First_analysis

 Create the "skeleton" of an EDAnalyzer module

mkedanlzr DemoAnalyzer

 Compile the code:

cd DemoAnalyzer

Scram b

A config must always create a cms.Process called
process. The label (MAIN in this case) will be applied to
any objects added to the root files

Number of events to process. -1 means
process all events in the input files. NB.
When submitted jobs to the grid this
parameter will be overridden automatically

Define some modules. The first argument should be
the name of the module as defined in the C++ class
(usually the class name). The subsequent named
arguments define the parameter set for that module.

Create a data source, a
list of files in this case.

The last step is usually to define one or
more paths containing the sequence of
modules to actually run

