

• An array is a collection of values that have the same
data type, e.g.
– A collection of int data values or
– A collection of bool data values

• We refer to all stored values in an array by its name
• If we would like to access a particular value stored in

an array, we specify its index (i.e. its position relative
to the first array value)
– The first array index is always 0
– The second value is stored in index 1
– Etc.

3

• Initializing arrays
– For loop

• Set each element

– Initializer list
• Specify each element when array declared

int n[5] = { 1, 2, 3, 4, 5 };

• If not enough initializers, rightmost elements 0

• If too many syntax error

– To set every element to same value
int n[5] = { 0 };

– If array size omitted, initializers determine size
int n[] = { 1, 2, 3, 4, 5 };

• 5 initializers, therefore 5 element array

fig04_03.cpp
(1 of 2)

// Fig. 4.3: fig04_03.cpp

// Initializing an array.

#include <iostream>

using std::cout;

using std::endl;

#include <iomanip>

using std::setw;

int main()

{

int n[10]; // n is an array of 10 integers

// initialize elements of array n to 0

for (int i = 0; i < 10; i++)

n[i] = 0; // set element at location i to 0

cout << "Element" << setw(13) << "Value" << endl;

// output contents of array n in tabular format

for (int j = 0; j < 10; j++)

cout << setw(7) << j << setw(13) << n[j] << endl;

return 0; // indicates successful termination

} // end main

Declare a 10-element array

of integers.

Initialize array to 0 using a for loop. Note that the array

has elements n[0] to n[9].

Element Value

0 0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

5

fig04_04.cpp
(1 of 1)

1 // Fig. 4.4: fig04_04.cpp

2 // Initializing an array with a declaration.

3 #include <iostream>

4

5 using std::cout;

6 using std::endl;

7

8 #include <iomanip>

9

10 using std::setw;

11

12 int main()

13 {

14 // use initializer list to initialize array n

15 int n[10] = { 32, 27, 64, 18, 95, 14, 90, 70, 60, 37 };

16

17 cout << "Element" << setw(13) << "Value" << endl;

18

19 // output contents of array n in tabular format

20 for (int i = 0; i < 10; i++)

21 cout << setw(7) << i << setw(13) << n[i] << endl;

22

23 return 0; // indicates successful termination

24

25 } // end main

Note the use of the initializer list.

Element Value
0 32
1 27
2 64
3 18
4 95
5 14
6 90
7 70
8 60
9 37

• The address operator (&) returns the memory address of a
variable.

1200 1201 1203

letter number amount

// This program uses the & operator to determine a variable’s

// address and the sizeof operator to determine its size.

#include <iostream.h>

void main(void)

{

int x = 25;

cout << "The address of x is " << &x << endl;

cout << "The size of x is " << sizeof(x) << " bytes\n";

cout << "The value in x is " << x << endl;

}

The address of x is 0x8f05

The size of x is 2 bytes

The value in x is 25

A pointer is a variable that holds a memory address. That’s it.

 This is what the difference in between variable and pointer.

◦ Pointer holds the address

◦ Variable holds the value.

Computer memory is divided into sequentially numbered memory locations. Each variable
is located at a unique location in memory, known as its address.

Pointers are useful for the following

• Working with memory locations that regular variables don’t give
you access to

• Working with strings and arrays

• Creating new variables in memory while the program is running

• Creating arbitrarily-sized lists of values in memory

// This program stores the address of a variable in a
pointer.

#include <iostream.h>

void main(void)

{

int x = 25;

int *ptr;

ptr = &x; // Store the address of x in ptr

cout << "The value in x is " << x << endl;

cout << "The address of x is " << ptr << endl;

}

The value in x is 25

The address of x is 0x7e00
0x7e00

25

ptr

x

Address of x:
0x7e00

// This program demonstrates the use of the indirection

// operator.

#include <iostream.h>

void main(void)

{

int x = 25;

int *ptr;

ptr = &x; // Store the address of x in ptr

cout << "Here is the value in x, printed twice:\n";

cout << x << " " << *ptr << endl;

*ptr = 100;

cout << "Once again, here is the value in x:\n";

cout << x << " " << *ptr << endl;

}

Here is the value in x, printed twice:
25 25
Once again, here is the value in x:
100 100

