

Introduction to ROOT 3

 The ROOT system is an Object Oriented framework for large scale
data handling applications. It is written in C++.

 Provides, among others,

 an efficient data storage and access system designed to support
structured data sets (PetaBytes)

 a query system to extract data from these data sets

 a C++ interpreter

 advanced statistical analysis algorithms (multi dimensional
histogramming, fitting, minimization and cluster finding)

 scientific visualization tools with 2D and 3D graphics

 an advanced Graphical User Interface

 The user interacts with ROOT via a graphical user interface, the
command line or scripts

 The command and scripting language is C++, thanks to the embedded
CINT C++ interpreter, and large scripts can be compiled and dynamically
loaded.

 A Python shell is also provided.

Introduction to ROOT 4

• Over 1500 classes

• 1,550,000 lines of
code

• CORE (8 Mbytes)

• CINT (2 Mbytes)

• Green libraries linked
on demand via plug-
in manager (only a
subset shown)

• 100 shared libs

Introduction to ROOT 5

• The project was started in 1995.
• The project is developed as a collaboration between:

– Full time developers:
• 11 people full time at CERN (PH/SFT)
• +4 developers at Fermilab/USA, Protvino , JINR/Dubna (Russia)

– Large number of part-time contributors (155 in CREDITS file)

– A long list of users giving feedback, comments, bug fixes
and many small contributions
• 2400 registered to RootForum
• 10,000 posts per year

• An Open Source Project, source available under the LGPL
license

Introduction to ROOT 6

• User classes

– User can define new classes interactively

– Either using calling API or sub-classing API

– These classes can inherit from ROOT classes

• Dynamic linking

– Interpreted code can call compiled code

– Compiled code can call interpreted code

– Macros can be dynamically compiled & linked

This is the normal
operation mode

Interesting feature
for GUIs &

event displays

Script Compiler
root > .x file.C++

Introduction to ROOT 7

Data Storage: Local, Network

Data Analysis & Visualization

Introduction to ROOT 8

• GUI
windows, buttons, menus

• Command line
CINT (C++ interpreter)

• Macros, applications,
libraries (C++ compiler and
interpreter)

9

Introduction to ROOT 10

• CINT is used in ROOT:
– As command line interpreter
– As script interpreter
– To generate class dictionaries
– To generate function/method calling stubs
– Signals/Slots with the GUI

• The command line, script and programming
language become the same

• Large scripts can be compiled for optimal
performance

Introduction to ROOT 11

To run function mycode() in file mycode.C:
root [0] .x mycode.C

Equivalent: load file and run function:
root [1] .L mycode.C

root [2] mycode()

All of CINT's commands (help):
root [3] .h

Introduction to ROOT 12

To run function mycode() in file mycode.C:
root [0] .x mycode.C

Equivalent: load file and run function:
root [1] .L mycode.C

root [2] mycode()

All of CINT's commands (help):
root [3] .h

Making your first histogram:

 Histograms can be 1-d, 2-d and 3-d

 Declare a histogram to be filled with floating point numbers:

TH1F *histName = new TH1F(“histName”, “histTitle”, num_bins,x_low,x_high)

 2-d and 3-d histograms can be booked similarly…

TH1F *my_hist = new TH1F(“my_hist”, “My First Histogram”, 100, 2, 200)

TH2F *myhist = new TH2F(“myhist”, “My Hist”, 100, 2, 200, 200, 0,500)

 To draw:
my_hist->Draw();

 To fill a histogram:
my_hist->Fill(50);
my_hist->Fill(100, 3); // the number 100 has weight=3

 Update the histogram:
my_hist->Draw();

 Change line color:
my_hist->SetLineColor(2); //red
or my_hist->SetLineColor(kRed); – my_hist->Draw();

We want to move towards being able to compare two or more histograms by plotting them on

the same axes. In order to do this we need two more skills - one is to be able to plot histograms

with different colours, and the other is some sort of information on which histo is which. The

latter is done with a "legend". Use the following code to add a legend to your histogram:

leg = new TLegend(0.6,0.7,0.89,0.89); //coordinates are fractions //of pad dimensions

leg->AddEntry(hist_1,"First histo","l"); // "l" means line // use "f" for a box

leg->Draw(); // oops

we forgot the header (or "title") for the legend

leg->SetHeader("The Legend Title");

leg->Draw();

leg->SetTextSize(0.04); // set size of text

leg->SetFillColor(0); // Have a white background

leg->AddEntry(hist_1, "text 1", "p"); // p shows points, // other options exist // (Check

documentation)

leg->Draw();

To illustrate how to plot two histograms on the same canvas, we will need to set up

another histogram:

TH1F *hist_2 = new TH1F("hist_2", "Another histo", 100, 2, 300);

Let's fill a few bins:

hist_2->Fill(20,10);
hist_2->Fill(50,4);
hist_2->Fill(3);
hist_2->Draw();
hist_1->Draw("same");
hist_1->SetLineColor(8); // green
hist_2->SetLineColor(4); // blue
hist_2.Draw(); //draw hist_2 first as it has a larger range
hist_1.Draw("same");
leg_hist = new TLegend(0.5,0.6,0.79,0.79);
leg_hist->SetHeader("Some histograms");
leg_hist->AddEntry(hist_1,"First histo","l");
leg_hist->AddEntry(hist_2,"Second histo","l");
leg_hist->Draw();

Copying Histograms

You can make an identical copy of a histogram by cloning,

TH1F *hist_new=(TH1F*)hist_1->Clone(); hist_new->SetName("hist_new");.

More Drawing Options

Here are some Draw options that you might like to experiment with for a 2-

dimensional histogram:

h2->Draw("text");

h2->Draw("col"),

h2->Draw("colz");

h2->Draw("box");

h2->Draw("surf");

Including Error Bars in Histograms

You can plot errors on histograms (perhaps more appropriate to plot them on first to

histograms!) by entering

hist_2.Draw("esame");

By default, errors are sqrt(entries).

Saving Histograms as Image Files

Now save your masterpiece to a file (this assumes that your histogram is printed on canvas

"c1"):

c1->SaveAs("myimage.eps");

c1->SaveAs("myimage.ps");

c1->SaveAs("myimage.gif");

Saving Source Code for Histograms

c1->SaveAs("myimage.C");

you can recreate the histogram in exactly the form that you saved it in a brand new ROOT

session by entering:

.x myimage.C

