

Introduction to ROOT 3

 The ROOT system is an Object Oriented framework for large scale
data handling applications. It is written in C++.

 Provides, among others,

 an efficient data storage and access system designed to support
structured data sets (PetaBytes)

 a query system to extract data from these data sets

 a C++ interpreter

 advanced statistical analysis algorithms (multi dimensional
histogramming, fitting, minimization and cluster finding)

 scientific visualization tools with 2D and 3D graphics

 an advanced Graphical User Interface

 The user interacts with ROOT via a graphical user interface, the
command line or scripts

 The command and scripting language is C++, thanks to the embedded
CINT C++ interpreter, and large scripts can be compiled and dynamically
loaded.

 A Python shell is also provided.

Introduction to ROOT 4

• Over 1500 classes

• 1,550,000 lines of
code

• CORE (8 Mbytes)

• CINT (2 Mbytes)

• Green libraries linked
on demand via plug-
in manager (only a
subset shown)

• 100 shared libs

Introduction to ROOT 5

• The project was started in 1995.
• The project is developed as a collaboration between:

– Full time developers:
• 11 people full time at CERN (PH/SFT)
• +4 developers at Fermilab/USA, Protvino , JINR/Dubna (Russia)

– Large number of part-time contributors (155 in CREDITS file)

– A long list of users giving feedback, comments, bug fixes
and many small contributions
• 2400 registered to RootForum
• 10,000 posts per year

• An Open Source Project, source available under the LGPL
license

Introduction to ROOT 6

• User classes

– User can define new classes interactively

– Either using calling API or sub-classing API

– These classes can inherit from ROOT classes

• Dynamic linking

– Interpreted code can call compiled code

– Compiled code can call interpreted code

– Macros can be dynamically compiled & linked

This is the normal
operation mode

Interesting feature
for GUIs &

event displays

Script Compiler
root > .x file.C++

Introduction to ROOT 7

Data Storage: Local, Network

Data Analysis & Visualization

Introduction to ROOT 8

• GUI
windows, buttons, menus

• Command line
CINT (C++ interpreter)

• Macros, applications,
libraries (C++ compiler and
interpreter)

9

Introduction to ROOT 10

• CINT is used in ROOT:
– As command line interpreter
– As script interpreter
– To generate class dictionaries
– To generate function/method calling stubs
– Signals/Slots with the GUI

• The command line, script and programming
language become the same

• Large scripts can be compiled for optimal
performance

Introduction to ROOT 11

To run function mycode() in file mycode.C:
root [0] .x mycode.C

Equivalent: load file and run function:
root [1] .L mycode.C

root [2] mycode()

All of CINT's commands (help):
root [3] .h

Introduction to ROOT 12

To run function mycode() in file mycode.C:
root [0] .x mycode.C

Equivalent: load file and run function:
root [1] .L mycode.C

root [2] mycode()

All of CINT's commands (help):
root [3] .h

Making your first histogram:

 Histograms can be 1-d, 2-d and 3-d

 Declare a histogram to be filled with floating point numbers:

TH1F *histName = new TH1F(“histName”, “histTitle”, num_bins,x_low,x_high)

 2-d and 3-d histograms can be booked similarly…

TH1F *my_hist = new TH1F(“my_hist”, “My First Histogram”, 100, 2, 200)

TH2F *myhist = new TH2F(“myhist”, “My Hist”, 100, 2, 200, 200, 0,500)

 To draw:
my_hist->Draw();

 To fill a histogram:
my_hist->Fill(50);
my_hist->Fill(100, 3); // the number 100 has weight=3

 Update the histogram:
my_hist->Draw();

 Change line color:
my_hist->SetLineColor(2); //red
or my_hist->SetLineColor(kRed); – my_hist->Draw();

We want to move towards being able to compare two or more histograms by plotting them on

the same axes. In order to do this we need two more skills - one is to be able to plot histograms

with different colours, and the other is some sort of information on which histo is which. The

latter is done with a "legend". Use the following code to add a legend to your histogram:

leg = new TLegend(0.6,0.7,0.89,0.89); //coordinates are fractions //of pad dimensions

leg->AddEntry(hist_1,"First histo","l"); // "l" means line // use "f" for a box

leg->Draw(); // oops

we forgot the header (or "title") for the legend

leg->SetHeader("The Legend Title");

leg->Draw();

leg->SetTextSize(0.04); // set size of text

leg->SetFillColor(0); // Have a white background

leg->AddEntry(hist_1, "text 1", "p"); // p shows points, // other options exist // (Check

documentation)

leg->Draw();

To illustrate how to plot two histograms on the same canvas, we will need to set up

another histogram:

TH1F *hist_2 = new TH1F("hist_2", "Another histo", 100, 2, 300);

Let's fill a few bins:

hist_2->Fill(20,10);
hist_2->Fill(50,4);
hist_2->Fill(3);
hist_2->Draw();
hist_1->Draw("same");
hist_1->SetLineColor(8); // green
hist_2->SetLineColor(4); // blue
hist_2.Draw(); //draw hist_2 first as it has a larger range
hist_1.Draw("same");
leg_hist = new TLegend(0.5,0.6,0.79,0.79);
leg_hist->SetHeader("Some histograms");
leg_hist->AddEntry(hist_1,"First histo","l");
leg_hist->AddEntry(hist_2,"Second histo","l");
leg_hist->Draw();

Copying Histograms

You can make an identical copy of a histogram by cloning,

TH1F *hist_new=(TH1F*)hist_1->Clone(); hist_new->SetName("hist_new");.

More Drawing Options

Here are some Draw options that you might like to experiment with for a 2-

dimensional histogram:

h2->Draw("text");

h2->Draw("col"),

h2->Draw("colz");

h2->Draw("box");

h2->Draw("surf");

Including Error Bars in Histograms

You can plot errors on histograms (perhaps more appropriate to plot them on first to

histograms!) by entering

hist_2.Draw("esame");

By default, errors are sqrt(entries).

Saving Histograms as Image Files

Now save your masterpiece to a file (this assumes that your histogram is printed on canvas

"c1"):

c1->SaveAs("myimage.eps");

c1->SaveAs("myimage.ps");

c1->SaveAs("myimage.gif");

Saving Source Code for Histograms

c1->SaveAs("myimage.C");

you can recreate the histogram in exactly the form that you saved it in a brand new ROOT

session by entering:

.x myimage.C

