

Outline

- **Operating Status**
 - Local Cluster
 - Grid Site
 - Network

Activities in progress

- HTCondor Cluster
- Storage
- Grid site

Summary

Brief Introduction to IHEP

BESIII (Beijing Spectrometer III at BEPCII)

DYB (Daya Bay Reactor Neutrino Experiment)

YBJ (Tibet-ASgamma ARGO-YBJ Experiments)

Large High Altitude Air Shower Observatory

Hard X-Ray Moderate Telescope

Circular Electron Positron Collider

Computing Resources

- 20,000 cpu cores, 100 GPU cards to for more than 10 experiments
 - HTCondor cluster runs for HTC jobs
 - Slurm cluster runs for HPC jobs
 - WLCG tier 2 site
- About 30PB storage
 - Luster and Eos are two main file systems
 - Caster for tape storage
- Network
 - IP V4/ IP V6 dual stack
 - Ether net(100Gb) / IB (100Gb) supported
 - LHCOne joint

Outline

- **Operating Status**
 - Local Cluster
 - Grid Site
 - Network

Activities in progress

- HTCondor Cluster
- Storage
- Grid site

Summary

Updates to Infrastructure

• New work node -- 6160 cpu cores

- H3C B5700 and Lenovo SN550
 - CPU Intel Xeon Gold 6248 20 cores 2.50GHz
 - Memory 128GB
 - Disk 960GB SSD
- Kernel Upgrade (CVE-2019-11477, CVE-2019-11478, CVE-2019-11479)
 - This is an Intel CPU vulnerability
 - Upgrade kernel to version 2.6.32-754.17.1.el6.x86_64

HTCondor Cluster Status

- Upgraded HTCondor to the 8.8.4
 - More stable
- Job memory limitation added
 - 2GB~4GB/job, depending on the memory the work node owned
 - Switch off swap of work node
- Totally 17,860,655 jobs and 4,802,874 hours last half year
- Job slot utilization is over 87%

Slurm GPU Cluster - Infrastructure

- Slurm GPU Cluster : OS SL7.5 + Slurm 18.08
 - Resource
 - 1 control node
 - 2 login nodes: 14 NVDIA v100 gpu cards
 - 10 worker nodes : 80 NVIDIA v100 GPU cards
 - 256GB memory
 - 10Gb Ethernet and 100Gb IB connection
 - Aim at lqcd, BES partial wave analysis, machine learning etc.
 - 800TB Lustre storage

• Space capacity

- Lustre :17 PB total, 9 PB used, 3 PB will be added soon
- EOS: 4 PB total, 3.3 PB used, 2PB will be added soon
- Performance -- Aggregate bandwidth
 - Read :17.35 GB/s peak, 9.3 GB/s average
 - Write :2.76 GB/s peak, 0.4 GB/s average

• Availability Time

• >99%

- To support newer linux kernel(3.x) and new coming hardware
- computing nodes are running older Lustre on top of 2.x Linux kernel

Storage Statistics

AFS Authentication Upgrade

- Upgraded AFS authentication from AFS kaserver to kerberos 5
 - Improve security: AFS kaserver has weak security properties
 - Success to get tokens when login nodes
- Features
 - More flexible: Account authentication is independent from AFS file system
 - Deployed with the master/slave configuration to provide high availability of Kerberos 5 KDC service
 - Support password-free authentication in Login farm

BEIJING-LCG2 Tier2 Resources

The Site keeps a good reliability at most of the time

BEIJING-LCG2 Tier2 Operations

- Adding support for VO LHCb
 - Resource for LHCb : 1008 CPU cores and 360TB disks.
- Join LHCOne and enable ipv6 for data transfer.
- Upgrade servers and work nodes to Centos7
 Develop UMD4 auto installation and configuration modules for Centos7.
 Upgrade DPM storage element to the latest version.
- HTCondor-CE testing is under going

Internet connection

- 4 X 10G links to CSTNet
 - 2X10G for LHCONE
 - 2X10G for normal traffic
- LHCONE update at IHEP
 - New Peer to GEANT by CSTNET was finished last month
 - Route between IHEP and Europe has been changed from Orient+(CERNet - GEANT) to REAL link(CSTNet - GEANT).
 - Peer points with Internet2/ESNet by CSTNET was ready two weeks ago
 - More peers for LHCONE will be ready
 - GEANT (Amsterdam)
 - APAN (Asia Pacific Area Network)

Data Center Network Updates

- InfiniBand network for HPC is ready
 - 100Gbps backbone, in production
 - RDMA_Write bandwidth: ≈ 11675 MB/s
 - RDMA_Write latency: < 0.95 us
 - 15 IB nodes for HPC now
- 100G Ethernet for DCN
 - Upgrade the data center core switch
 - Add a 100Gb/s blade module, provide 6 100Gb/s ports
 - A new 25GE TOR is online, provide 4 X 100Gbps uplink for storage servers, whose Ethernet card is 25Gb/s
- Latency monitoring service for computing platform is online
 - The performance of internal network in Data Center is well

Los - Consecuter Laterity i Esting Los rate is <= 0 Los rate is >= 0 Los rate is >= 1 Unable to retrieve data Check has not yet run

Outline

- **Operating Status**
 - Local Cluster
 - Grid Site
 - Network

Activities in progress

- HTCondor Cluster
- Storage
- Grid site

Summary

Activities in progress– HTCondor cluster

- Migrate from SL7 to CentOS
 - Tests are undergoing
- Plan to run all jobs in container
 - Motivation
 - •SL6 doesn't not support new hardware
 - •Experiments do not want to upgrade to SL7
 - Easy to dispatch job to remote site
 - Singularity container job test: SL6 and SL7 images with dedicate experiment file directories mounted
 - Plan to start with the new coming work node

GPU cards for LQCD Performance Evaluation

- Procurement for 80 GPU cards this year
 Support LQCD
- Performance Evaluation for LQCD to run on GPU cards
 - nvswitch vs. nvlink
 - 20% performance promoted
 - IB network performance
 - •4 GPU cards/100GB IB card
 - Memory: 384 GB

EOS + JBOD Evaluation

- Current RAID disk arrays can not run full bandwidth, which will become a performance bottleneck
- Use JBOD instead of RAID to provide better performance
- Tests on JBOD
 - Preliminary tests showed that the speed was increased by about two times compared with RAID.
 - A single SATA disk is basically 130MB/s, the aggregation of 30 SATA disks can reach 4 GB/sec.
 - 60+ disks JBOD should be configured with two servers.
- Next Step
 - Purchased 4 DELL ME484 JBOD arrays and 8 servers, totally raw capacity 4PB.
 - Will be extended to the LHAASO EOS instance in Q4, configured with replica layout in EOS.

DELL ME484 JBOD

5U84 drive expansion

Direct attach for 13G and 14G PowerEdge servers Support for direct attach SAS using 12Gb SAS HBA

CTA at IHEP

• Motivation from CASTOR 1 to CTA

- EOS is already adopted by IHEP for the disk storage.
- EOS+CTA provides a unified interface to access disk and tape.
- Development of DB backend
 - MySQL is used widely at IHEP.
 - With the help from Steven Murray at CERN, MySQL is supported.
- Deployment at IHEP with virtual tape library
 - 3 dedicated servers are purchased.
 - The full software stack is deployed into one server using kubernetes.
- Prototype at IHEP is under preparation
 - IBM TS2900 Tape Autoloader with LTO 7 driver
- Next step:
 - setup the prototype and measure the performance.

- Both computing and storage scale expanded
- Software upgrades has been done and the IHEP site keeps running smoothly
- Taking efforts to meet the requirements from the experiments
 - Container job
 - JBOD storage
 - LQCD performance

Thank you!

Question?