Status and Operation of LHAASO Computing Platform

W. Zheng, Q. Huang, H. Li, J. Zou, M. Qi, B. Zhuang Computer Center, IHEP

Outline

- ■Brief introduction to LHAASO
- □LHAASO computing status
 - □Container virtualization
- □ Distributed Monitor
- Summary

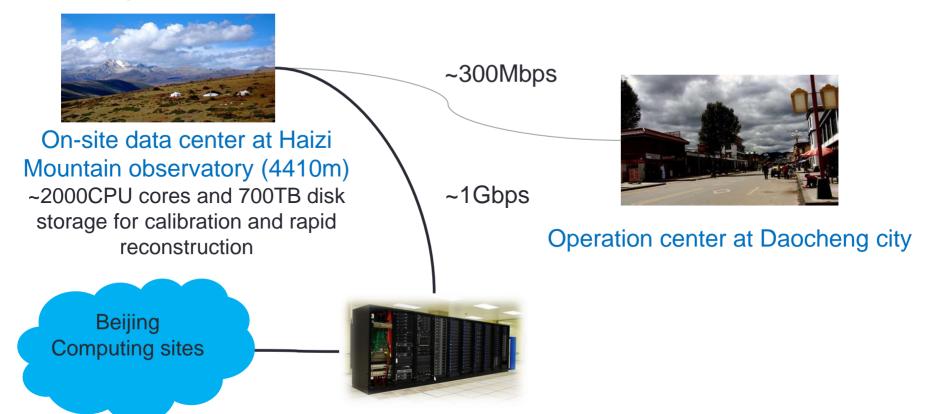
Large science facilities of IHEP

- IHEP: The largest fundamental research center in China
- IHEP serves as the backbone of China's large science facilities
 - Beijing Electron Positron Collider (BEPCII/BESIII)
 - Yangbajing Cosmic Ray Observatory (ASg & ARGO)
 - Daya Bay Neutrino Experiment
 - China Spallation Neutron Source (CSNS)
 - Hard X-ray Modulation Telescope (HXMT)
 - Accelerator-driven Sub-critical System (ADS)
 - Jiangmen Neutrino Underground Observatory (JUNO)
 - Large High Altitude Air Shower Observatory (LHAASO)
 - High Energy Photon Source (HEPS)
 - Under planning: XTP, HERD,CEPC ...

2019/10/18 4

LHAASO: Large High Altitude Air Shower Observatory

- Mt. Haizi (4410 m a.s.l., 29°21' 27.6" N, 100°08'19.6" E), Sichuan, China
- An major infrastructure project of 12th Five-Year Plan
- A new generation all-sky instrument to perform a combined study of cosmic rays and gamma-rays in the wide energy range 10 TeV -- 1 EeV
- Funded mainly by China, 20+ institutions joining the collaboration
- LHAASO Scientific Goals
 - Origin of galactic cosmic rays
 - Gamma ray astronomy
 - New physics frontier (dark matter, Lorentz invariance...)



Computing Requirements

- ~6 Petabytes of data annually generated by the LHAASO detectors
 - 6 PB of raw data, and >200TB of reconstruction data
 - Totally >60PB for ten years
- >2 Petabytes of data generated by MC simulation
- To build one distributed computing system containing about 6000 CPU cores to process the data
 - ~ 4500 CPU cores for reconstruction, analysis, ...
 - ~ 1500 cores for production

Offline data processing workflow

- Computing farm includes local site(Beijing) and on site (Daocheng)
 After the experimental data is acquired by DAQ, it enters the offline computing platform
- Provide support services for data storage, transmission, sharing, analysis and processing

Current LHAASO computing environment

Daocheng Observation onsite

- DAQ, data filtering, fast reconstruction, compression, etc.
- Transfer raw data and fast reconstructed data to main center

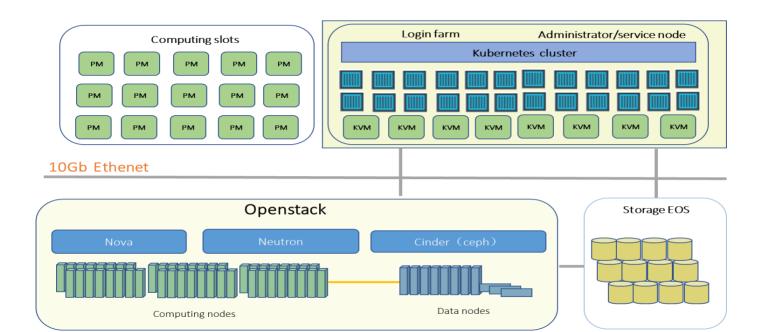
Beijing local cluster

- Storage of all data (raw, reconstructed, simulated, analyzed, etc.)
- All data reconstruction computation
- Distribution of reconstructed data to sub-centers
- Receiving simulation and analysis data from the sub-center

Distributed monitoring

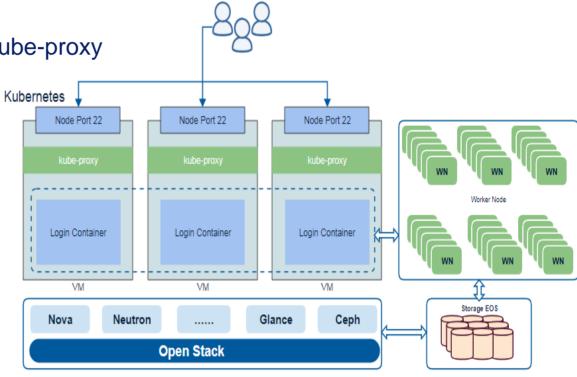
· Web page and alarm system for operator and administrator

Site	Function	Computing	Storage
DaoCheng Onsite	fast reconstruction	468 Cores	700 TB
Beijing Local Cluster	Data reconstruction and analysis	15,000 Cores	2.4 PB


8

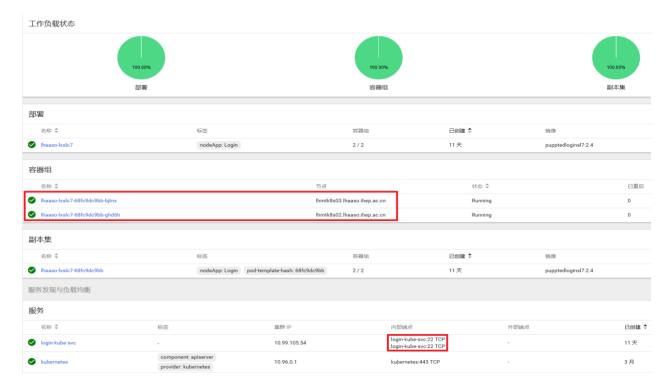
Motivation & Challenges

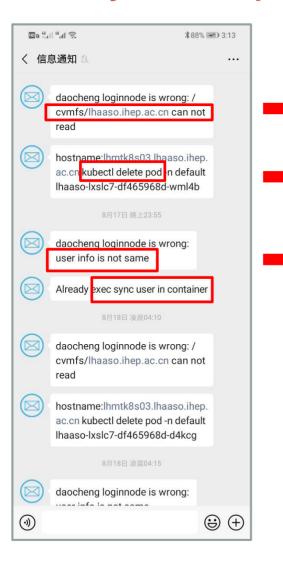
- The Onsite at high altitude, high cost for operation and maintenance
 - Computing system instability of remote sites
 - Man power for maintenance is poor
 - Unstable power supply and network connection
- Not enough physical machines to run services onsite, only 20+ physical machines
- Virtualization and cloud computing technologies
 - Virtualization technology to hide the underling details
 - Reduce the cost of operation and maintenance greatly
- No typical experiment software
 - Several OSes are requested


Cloud-based computing farm onsite

- Login Node
 - Login container on vm, kubernetes manage login nodes pods
 - Load balancing
 - Easy to scale and recover
- Administrator/Service node
 - Vms for Htcondor/Monitor/Puppet...
- Computing node
 - Physical machine, support singularity container jobs

Login Nodes


- Containers run on the VM provided by openstack
 - SL7 container image, scheduled by kubernetes
 - AFS/CMVFS/EOS mounted
 - Singularity support
- Load balance
 - Expose ssh 22 port
 - Round-Robin Scheduling by kube-proxy
- Auto dynamic expansion
- Stable and highly available
 - Auto restart container if err happens


Login Node environment

- PM OS
 - CentOS 7.6
- VM Instance OS
 - SL 7.5
- Container OS
 - SL 7.5

- Openstack Queens(RDO)
- Kubernetes
 - 1master+2slave
 - Version 1 12 0

Recovery example

i detected /cvmfs err

Del err pod container, start a new one

User info not sync, exec sync script in container to update user info

Auto scale

- According to the system load and the number of users login, set the number of pods, automatically scale up and down
- Auto scale up login pods
 - kubectl scale --replicas=3 -f login.yaml
- Auto scale down specific pods
 - delete replication controller
 - delete the non user login pods
 - recreate replication controller of size 2

Work node

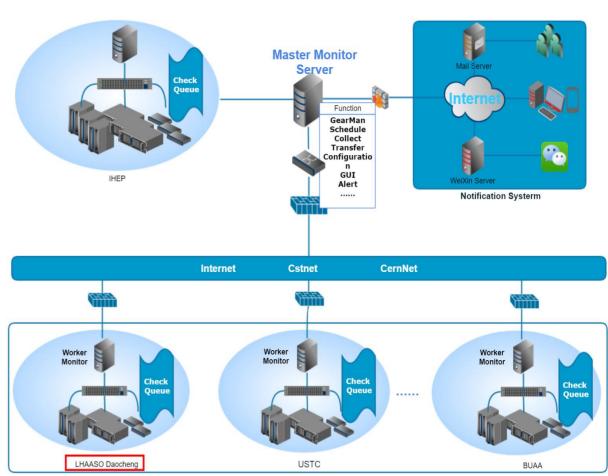
- Physical machine
 - OS SL7.6
 - Installed and managed by puppet+forman
- Singularity support
 - Lightweight compared with docker
 - SL6.9 and SL5.5 image
 - AFS for container image distribution
 - AFS home directory and EOS for data directory mounted

Administrator node

- VM nodes
 - Improve resource utilization, not enough hosts
 - Use ceph storage
- VM vs container
 - Better isolation
 - Virtualize NIC, Flexible network configuration
 - Independent kernel
- Administrator nodes support service
 - Htcondor schedule server
 - Nagios distributed agent
 - Ganglia local server
 - Mirror http web for OS and Software
 - Data transfer severs

Hep_container tool

- A container tool developed for IHEP and distributed sites(Daocheng\PKU\USTC)
- Based on singularity, satisfy users' various OS requirements
- Automatically mount the experimental directory according to the user's uid and gid to protect data security


```
[zhengw@lxslc701 ~]$ ./hep container help
Usage : ./hep container <command> [command options...]
CONTAINER USAGE COMMANDS:
    shell
                   Run a Bourne shell within container image
                   Execute a command within container image
    exec
                   List Support container images
    images
                   List Support groups
    groups
                   With a specific group name
    -g groupname
EXAMPLES:
    ./hep container images
    ./hep container groups
    ./hep container shell SL5
    ./hep container shell SL5 -g physics
    ./hep container exec SL5 cat /etc/redhat-release
    ./hep_container_exec_SL5_python_./yourprograme.py
    ./hep_container_exec_SL5 -q_physics_cat_/etc/redhat-release
[zhengw@lxslc701 ~]$ ./hep container images
Hep container support images:
        SL5 : Scientific Linux 5
        SL6 : Scientific Linux 6
[zhengw@lxslc701 ~]$ ./hep container groups
Hep container support groups:
        u07|atlas|atlasrun|comet|offline|physics|higgs|ams|cms|dyw|hxmt|polars|juno|argo|lhaaso|
```

2019/10/17 17

Distributed unified monitoring

Central Site: IHEP

- Nagios V4 integrate with Mod_gearman
- Central site receive metric report from remote site
 - 5 sites &1,600+ hosts &18,000+ metric
- Daocheng onsite
 - Reports site own info to central site
 - 1 worker node 5 workers
- Monitoring period for all metric is less than 2 mins

18

Unified Dashboard

 Daocheng site monitoring has been added into IHEP monitoring system.

Monitoring performance of LHAASO

- 36 hosts and 178 services
- Hosts monitoring period <=5mins, mostly < 1mins
- Services monitoring period <=5mins, mostly <1 mins

Host Group	Host Status Summary	Service Status Summary
lhaaso-本地监控 (lhaaso-local)	5 UP	5 OK
lhaaso 计算节点 (lhmt-worknode)	13 UP	85 OK 6 WARNING: 6 Unhandled
lhaaso cloud server (lhmtcloud)	3 UP	3 OK
lhaaso eos servers (Ihmteos)	2 UP	12 OK 1 WARNING: 1 Unhandled 1 CRITICAL: 1 Unhandled
lhmt-k8s-cluster (lhmtk8s)	3 UP	16 OK
路由器 (Ihmtrouter)	2 UP	2 OK
Ihmt调度服务器 (Ihmtsched)	2 UP	9 OK

Hosts Actively Checked:

Time Frame	Hosts Checked		
<= 1 minute:	1134 (85.3%)		
<= 5 minutes:	1328 (99.9%)		
<= 15 minutes:	1328 (99.9%)		
<= 1 hour:	1328 (99.9%)		
Since program start:	1328 (99.9%)		

Metric	Min.	Max.	Average
Check Execution Time:	0.00 sec	7.50 sec	4.017 sec
Check Latency:	0.00 sec	0.93 sec	0.465 sec
Percent State Change:	0.00%	0.00%	0.00%

Notification

- Timely and accurate alarm notification
 - Notify the system administrators at the first time
- Alarms: Web page, WeChat, Email, SMS

100 46 all 46 all 100 84% 10:33 远程站点 🔊 Nagios ** PROBLEM Service Alert: lhaaso路由器-山上/ch eck pingis WARNING ** Host Status Summary Service Status Summary Host Group 类型:PROBLEM € %件人: keb fast@163.com n 主机名:lhmtr-k8s02 62 OK 收件人: zhengw@ihep.ac.cn 状态:DOWN IP 地址:10.2.216.22 24 on Problem Hosts 24 WARNING 输出:CRITICAL - Time to live lhaaso 计算带点 (lhmt-worknode) exceeded (10.2.216.22) 4 DOWN: 4 Unhandled ***** NMS ***** 5 CRITICAL 时间:2019-04-03 14:18:04 Notification Type: PROBLEM 4 on Problem Hosts Service: check_ping Host: lhaaso路由器-山上 lhaaso cloud server (Ihmtcloud) Address: 125.67.5.88 State: WARNING (B) Nagios Date/Time: Mon Apr 1 15:51:05 CST 2019 lhaaso eos servers (Ihmteos) 类型:RECOVERY 29 Additional Info: n 主机名:lhmtwn001 PING WARNING - Packet loss = 20%, RTA = 84.95 ms 状态:UP Ihmt-k8s-cluster (Ihmtk8s) IP地址:10.2.230.11 输出:PING OK - Packet loss = 路由器 (Ihmtrouter) 0%. RTA = 0.19 ms Ihmt個度服务器 (Ihmtsched) 时间:2019-04-03 15:36:54 Nagios

 \odot

(+)

2019/10/17 21

Summary

- Cloud based Daocheng onsite runs well
- Try to make LHAASO resources keep high utilization
- Rapid recovery after site failure
- Operation and maintenance of LHAASO site is benefit from the distributed monitoring and alarm system

#