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Motivation

● large mass (4.62 GeV/c2) → it can 
be created only in initial hard 
scatterings.  Its production rate 
can be calculated from pQCD

● long lifetime →  it survives through 
the whole evolution of QGP 
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Properties of b-quark:CMS Results 
(pPb, 5.02 TeV, full jets 2018)

ALICE wants to study b-jets at  lower 
momenta

[The CMS Collaboration - “Transverse momentum spectra of inclusive b 
jets in pPb collisions at √s

NN
 = 5.02 TeV”, CERN-PH-EP/2013-037, 

2018/10/09]

 



  

Analysis settings

Event selection
● Minimum bias trigger (V0 scintillator arrays)
● |z

vtx
| < 10 cm

● Pileup rejection
After event selection we have 6 · 108 minimum bias events

Track selection
● Hybrid tracks
● |η

track
| < 0.9

Jet selection:
● Charged anti-k

T
, R=0.4

● p
T, constituent

 > 0.15 GeV/c 

● p
T
 recombination scheme

● |η
jet

| < 0.9 – R < 0.5
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Background density correction:
Two leading k

T
 jets are excluded

pT , charged jet
corrected =pT , charged jet

RAW −ρ⋅A jet

ρ=
A physical jets

Aall jets

×mediankT physical jet
{

pT , jet
ch , raw

A jet

}



  

B-jet tagging via SV reconstruction
b-jet candidate selection:

● 3 prong SV is made out of jet constituents
● In each event we consider the most displaced SV

Discrimination variables:
1) Significance of the distance between primary and 
secondary vertices

SLxy = L
XY

/σ
Lxy 

> 5 to 9 
 

2) Dispersion of the SV σ
SV 

< 0.02 to 0.05 cm

d
i 
– distance of the closest approach (DCA) of i-th 

prong to SV

3) Invariant mass in SV (reserved for purity 
estimation)

L xy
±σ

Lx
y

σ SV=√∑
i=1

3

d i
2
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Primary 
vertex

Secondary 
vertex (SV)

Jet



  

Raw p
T
 spectrum of b-jets

dN b - jet
primary  

 dpT , jet ch

=
dN b - jet candidates

raw

dpT , jet ch

×
Pb
εb

Pb  −  purity of the b-jet candidates

εb  −  efficiency of the b-jet selection after applying cuts
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● Selected sample of b-jet candidates contains b, c and LF-jets.
● To get RAW transverse momentum spectra of b-jets, the spectrum of 

b-jets candidates needs to be corrected: 



  

Efficiency of SV tagging

εb ≈ 35 %, εc ≈ 11 %, εLF ≈ 1 %
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b-jet tagging efficiency is estimated from 
EPOS+PYTHIA detector-level simulation:

εb=
N b - jets

selected

Nb - jets
all

           −  the number of b-jets without any 
constraint on presence and parameters of 
SV

           −  the number of b-jets that were 
reconstructed when applying cuts on b-
jets candidates

N b - jets
all

N b - jets
selected



  

 b-jet purity from data driven
template fit method

● The datca driven method is based on representation of the measured distribution of 
invariant mass of SV as a linear combination of MC templates: 

    nSV=Pb⋅T b+Pc⋅T c+PLF⋅T LF

     nSV  −  measured SV invariant mass distribution in given jet-pT bin 

        Tb, Tc, TLF  −  MC template spectra for each jet flavor

     Pb, Pc, PLF  −  purity for each jet flavor

● Purity is evaluated in 5 GeV/c wide pT, jet ch bins 

● TMinuit library was used to fit MC templates to measured distribution 

1=Pb+Pc+PLF
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(nSV , i−Pb⋅T b ,i−Pc⋅T c ,i−PLF⋅T LF , i)
2

σnSV ,i

2 +(σT b ,i
⋅Pb)

2+(σT c ,i
⋅Pc)

2+(σT LF , i
⋅PLF)

2χ2=∑
i=1

nbis

σ
nsv 

, σ
Tb 

, σ
Tc

, σ
TLF 

 −  statistical error for each jet flavor



  

Results of TMinuit fitting
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Data-driven method results
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- Bad convergence for pT,jet ch > 35 GeV/c  → larger statistics for MC and Real Data is required



  

POWbc method to assess purity of SV
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POWbc method -  based on b and c-jets spectra calculated by Next-to-Leading Order (NLO) 
POWHEG generator:

1) Fold generated b and c jet spectra (particle level) with jet response matrix which accounts 
for momentum smearing due to local background fluctuations and instrumental effects
2) Purity estimate: 

 

Pb=
N bεb

N bεb+N cεc+N LFεLF

N
b 
,
 
N

c 
 − folded POWHEG p

T 
spectrum of b and c-jets  

N
LF 

 = RAW p
T  

spectrum of inclusive jets − N
b 
ε

b 
− N

c 
ε

c 
 
  

ε
b
, ε

c
, ε

LF 
 −  efficiency of SV tagging for b, c and LF-jets for corresponding SL

xy
 and σ

SV
 



  

POWbc method results
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- Problem with a significant scale uncertainty from POWHEG
 - Results strongly depends on POWHEG settings → need to choose the optimal one



  

Hybrid method for purity estimation
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 Hybrid method: different POWHEG settings were tested against the template fit results 
to find plausible POWHEG settings (regularization and renormalization scale)

χ2 compatibility of POWHEG with data was evaluated using::

χ2=∑
bins

(f b
POWbc

−f b
data−driven

)
2

σPOWbc
2 +σdata−driven

2

-  χ2 was computed for all tagging settings (SL
xy

 and σ
SV

)
-  Only settings for which χ2 / n.d.f. < 10 were used



  

Purity to efficiency correction

 

Danišovce 2019                             Isakov Artem       13



  

Unfolding procedure
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X X NT , jet
ch , particle level NT , jet corrected

ch , detector level
=

δpT matrix represents smearing of p
T 
spectrum due to local fluctuations in 

background density 

Instrumental matrix represents detector effects

b-jets p
T
 spectrum on a particle level this is our goal  

Measured b-jet p
T
 spectrum corrected for SV efficiency and purity  

The problem of searching of b-jet p
T 
spectrum on a particle level can be solved with 

unfolding technics



  

Systematic uncertainties
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Source of syst. 
uncert.

10 < p
T,ch jet 

<20 GeV/c
40 < p

T,ch jet 

<50 GeV/c
80 < p

T,ch jet 

<100 GeV/c

Purity (%) -24.7 / +18.2 -11.0 / +14.8 -15.7 / +28.5

SV Tagging (%) -4.7 / +9.1 -4.3 / +3.1 -11.2 / +5.9

Unfolding (%) -8.5 / +5.6 -4.4 / +3.6 -17.8 / +14.9

Tracking eff. (%) -9.2 / +9.2 -7.9 / +7.9 -6.5 / +6.5

p
T,track

 smearing (%) -3.3 / +3.3 -4.5 / +4.5 -5.3 / +5.3

Secondaries (%) -0 / +4.1 -0 / 5.4 -0 / +7.8

δp
T

-0 / +16.0 -0 / +5.4 -0 / +0.2

Total (%) -28.2 / +28.5 -15.5 / +19.6 -27.5 / +34.7

Total systematics calculated with the formula:

Δ sys
tot=√∑

i

(Δ sys
i )2



  

Comparison SV results to POWHEG simulations
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HVQ EPPS16 PYTHIA8 HVQ EPPS09NLO PYTHIA6HVQ EPPS16 PYTHIA8



  

Comparison SV results to DCA analysis 
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DCA analysis was done by Hadi Hassan in parallel [?]



  

Summary

● SV method was applied to measure b-jet spectra in p-Pb collisions at 
√sNN= 5.02 TeV

● Correction on efficiency / purity of SV tagging was done with hybrid 
method (data-driven + POWbc)

● Results successfully are compatible with different POWHEG 
simulations and an independent analysis based on the DCA  

Further steps: 

● Calculate RpB for b-jets 

● Apply MVA methods to estimate SV purity to efficiency correction and 
decrease systematic uncertainties
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Backup
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Zimányi School 2018                             Isakov Artem       18

Default POWHEG settings POWHEG fact05ren1
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Effect of removal of 1-entry bin Different binning



  

Unfolding of raw b-jet spectrum
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Analysis settings:

- SL
xy

>7, σ
SV

 <0.03 cm

- SVD unfolding with k=5

- Pur/Eff correction from hybrid method

- prior POWHEG+PYTHIA6 b-jet 
spectrum 

- δp
T
 matrix from real data events with 

SV

- instrumental matrix from PYTHIA



  

Dead cone effect
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“Gluonsstrahlung” - process of gluon radiation by quarks (or gluons)
 

θ
“Dead cone”

Heavy
quark

θ2

[θ
2
+(m /E)

2
]
2

Gluonsstrahlung probability

         ~

“Dead cone” effect – gluon radiation from 
massive quarks is suppressed at angles 
θ < m/E  →  Less E loss inside the 
medium for heavy quarks expected 

[ Yu.L. Dokshitzer, D.E. Kharzeev - “Heavy Quark Colorimetry of QCD Matter”, 
arXiv:hep-ph/0106202]



  

 - Energy,           - “color charge”,         - transverse momenta  

Probability of gluon emission 

 

dPHQ=
αs CF

π
d ω
ω

kT
2 dkT

2

(kT
2
+ω

2
θ0

2
)

2=
αs C F

π
d ω
ω

θ2 d θ2

(θ
2
+θ0

2
)

2

dP0≃
αs C F

π
d ω
ω

dkT
2

kT
2 =

αs CF
π

d ω
ω

d θ2

θ
2

For light quarks:

For heavy quarks:
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θ0=
M
E

CFω kT

dP0 - Probability to radiate gluon 

Where



  

 - Energy,           - “color charge”,         - transverse momenta  

Probability of gluon emission 

 

dPHQ=
αs CF

π
d ω
ω

kT
2 dkT

2

(kT
2
+ω

2
θ0

2
)

2=
αs C F

π
d ω
ω

θ2 d θ2

(θ
2
+θ0

2
)

2

dP0≃
αs C F

π
d ω
ω

dkT
2

kT
2 =

αs CF
π

d ω
ω

d θ2

θ
2

For light quarks:

For heavy quarks:
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θ0=
M
E

CFω kT

dP0 - Probability to radiate gluon 

Where
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