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PyECLOUD-PyHEADTAIL simulations

Take a slice of a beam Solve Solve
passing through a Poveom | Poveam __poeam [ LEc | Poec  pec
slice of an EC. ox2 e ox? ay? €0
$
,5;\0 o Calculate Electric Fields
& & on grid using finite
L= i
(\6{3’ differences.
s . N
Calculate Electric Fields on
EC macroparticle positions
with linear interpolations.
s N
Kick beam Calculate Electric Fields on Track EC macroparticles and

beam particle positions with
linear interpolations.

a

particles in slice

—

update PEC
- J

Beams are sliced in { = s% — Bct. From the point of view of the
EC, s does not change and ( is basically time!
We propose to modify the kicks to the beam particles to support

long-term tracking.
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Symplecticity Condition

Suppose we have a map! M that transforms
X = (Xl,Xg) to X = (Xl,Xz)Z

X = Mx
The map M is symplectic if

MSMT =S (1)

where M is the Jacobian with Mj; = }%" and $ = <_01 é)

If the map can be represented with a matrix multiplication, then
the Jacobian is the matrix that multiplies x.

This example is in 1D but can be trivially generalized to any dimension.
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Symplecticity - Simple Map

Simple transverse thin-lens electrostatic kick:

f i

X =X
pl=pl+ A E(xy") 1 0 0 0
yf:yi Jacobian M = A8XEX 1 A(‘)yEX 0
Py = by + A Ey(xy) PR
yo R AOE, 0 AdE, 1
gl
~ fPymc?

Symplecticity condition MSMT =S boils down to:

0. _0E,
dy  Ox
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Symplecticity - PyECLOUD

Map in PyECLOUD?is:

X =X

pl=p+A Ex(xy)
=y
ph=pl+A-E(x,y"),

__at -

 Pymc? I

where E,, E, are bilinear interpolations on finite differences.
Ecy (X, 7) = axy + beyX + cxyy + di X7,

%=—e[0,1]

1
Ax €[0,1]

jo L
9y Ay
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Symplecticity - PyECLOUD

Ex,y ()?7)7) = axy + bx,y)? + Cx,y}7 + dx,y)?y

where the coefficients are defined as:
0,0
Iy = E>S,y :
0,0 1,0
b,y = _E>E7y )+ E>g,y :
0,0 0,1
oy = ~ESD + G L L LT

dey = B — EQY — B0V + BV,

and the derivatives are:

. - bx,y + dx.yy . -
aXEx,y (x,y) = #7 8yEX,y (X7.y) =

Cxy + diyX
Ay
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Symplecticity - PyECLOUD

Symplecticity Condition:

O«E, (X,7) — 0 Ex (X, 7)=0=
&_'_ dy)'; S dX %
Ax = Ax Ay Ay

All coefficients of the polynomial must vanish.

by e _
Ax Ay
= dy =0
d, =0
—E)(/O’O)—i-E)(,LO) E(o 0)+E(0 ,1)

Ax -
= E)((O,O) . E)SI,O) . E(O 1) n E(l 1) -0
E}SO’O) . E)Sl,O) . E}EO ,1) + E}gl ,1) -0
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Symplecticity - PyECLOUD

Fields defined as central differences:

¢l+1u) ¢(' 1J)

E(i’j) _
x 2Ax
£0) _ _¢(Iu+1) _ qj(l,rl)
4 2Ay
_Ey(o,o)+Ey(1,o) —E)((°’°)+E)£°'1) _

Ax Ay
E)EO,O) . E)EI,O) - E)EO,I) + E)El,l) -0
E}EO,O) _ E}Sl,O) _ E}so,l) + E}ELl) -0

Substituting the electric fields with the finite differences, we get:

¢(0;1) _ ¢(0;*1) _ ¢(1,1) 4 (b(l»*l) _ ¢(170) 4 ¢(*170) 4 ¢(1,1) _ ¢(*1,1) -0
_¢(1,0) + ¢(—1,0) + ¢(2,0) _ ¢(0,0) 4 ¢(171) _ ¢(—171) _ ¢(271) + ¢(0,1) -0
_¢(0,1) + ¢(0,—1) + ¢(1,1) _ ¢,(1ﬂ—1) + ¢)(0,2) _ ¢(070) _ ¢(172) + ¢(170) -0
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Symplecticity - PyECLOUD

The present map is symplectic if:

¢(0,1) _ d)(o,fl) _ ¢(1,1) + ¢(1,71) _ ¢(1,0) + d)(fl,o) +¢(1,1) _ ¢(71,1) =0
_(25(1,0) + ¢(*1,0) + ¢(2;0) _ ¢(0;0) + ¢(1,1) _ (b(*l»l) _ ¢(271) + ¢(071) -0
_ g0 | p0-1) 4 g11) _ p1-1) L 502) _ 4(0.0) _ 5(12) L 4(10) _ g

@ These conditions are not linearly independent of the equations
consisting the Poisson solver.

@ Imposing them leads to an overdetermined system of
equations which has no solution.

o Linearly interpolating on finite differences produces
non-symplectic kicks.
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Symplectifying in 4D

Given a regular grid of a scalar potential ¢('4), calculate E,, =
such that the kick is symplectic, i.e.:

OE, OE,
ox Oy
By defining E; = —g—f and E, = _%)' we need only find an

analytical approximation of ¢ such that

0 (99) _ 0 (09

ox \dy ) Oy \ 0x
The condition holds if we interpolate ¢ with a scheme that
guarantees continuous derivatives. (C!-Continuity)
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Extending to a 6D kick

A Hamiltonian that produces this 4D kick is:

Hx,yis) = o056 (x,) 309

where J(s) is Dirac's delta function. Actually, we have ¢(x,y) for
each step of (. We can use a 3D interpolation method to get a
function for ¢(x,y, ().

Finally, our Hamiltonian is>:

H(x,y,¢s) = 7 mc2¢>( x,y,¢)d(s)

3The full family of thin symplectic 6D kicks can be found in the appendix.
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6D Symplectic Kick

and it produces the kick:

X = X

gl 9¢
Px = Px — Zﬁi;;;;ﬁé%;(x7ya<)
y—=y

gL 9¢
py'_>py_ Bzvmcz ay(xvyaC)
¢ ¢

gl 9¢
6'_>6 52'ym628C(X’y’C)

The problem reduces to approximating ¢ in such a way that it is
analytically differentiable once and C! continuous.
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Section 4

Tricubic Interpolation
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How to interpolate*

Given a regular 3D grid of any function ¥k we interpolate
locally in a way that the first derivatives are continuous globally.

P7

@ To be continuous globally, first we
must be continuous at the corners.

y To do that we _fix the values
of of 8f} at the 8 corners of

Py Ps

S TUUTEIN NSO S f, Ox’ 87y’ 9z
our cube — 32 constraints.

Po Py X

3Lekien, F & J. E., Marsden. (2005). Tricubic Interpolation in Three Dimensions. International
Journal for Numerical Methods in Engineering. 63. 10.1002/nme.1296.
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Interpolating Function

For simplicity, we want to interpolate with a polynomial function :

N N N

f(x,y,z) = Z Z Z a;jkxiyjzk

i=0 j=0 k=0

Pz

Degrees of Freedom = (N 4 1)3

_ o N =3 = 27 Degrees of freedom.
Pa Ps Not enough!

y e N =4 = 64 Degrees of freedom.

(N P More than enough, but we need
32 additional constraints.

Po Py X
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Violation of Charge Conservation

3 3 3
Can we impose values for f(x,y,z ZZZ" iox'yl 2%
0x27 dy?’ 9z oF 3 3 3
conserve charge o (x7.2) S gy
. X
simultaneously? =1 j—0 k=0
y,z=0
z Po P7 f(x,0,0) = a000 + a100x + a200x> + azo0x
gi (x,0,0) = a100 + 2a200% + 3azp0x>
Py Ps flpo = @000
y flpy = @000 + @100 + a200 + aso0
=3 of
Py P3 g'po - Ao
S lpr = a100 + 2a200 + 3a300
o2
%(X7 0, 0) = 2az00 + 6a3z00x
Po Py X

92 . . .. .
372 is linearly dependent on the existing constraints.
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Additional Constraints

We cannot use the derivatives
O*f 0% 0°f
Ox2’ 9y?’ 022

As it turns out, the simplest set of constraints that is linearly
independent to our other constraints is

Pf OPF f OF
Ox0y’ 0x0z’ Oydz’ OxOydz

Finally, our full set of constraints (input) is

[ Of Of of Pf f PfPf
"Ox’ Qy’ 0z’ Oxdy’ Ox0z’ Dydz’ OxDydz
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Tricubic Interpolation

Flp; 0<i<7
HY P7 .
Z 6 %’Pifa 83<i<15
g*;|p,>16 16 < i <23
o : L lor-oa 24 < <31
v bi =1 "y :
YA O D M‘Pi732 32 S i S 39
i ’ 92f .
2 3 Px7 | Pi—a0 40 < j < 47
02 f _
W|Pi—4s 48 < | <55
Po (] " 83f .
3 3 3 \W’PF% 56 < i <63
i J ok
flxy,2) =3 > > apx'y'z Qitajt16k = dijk
i=0 j=0 k=0

Bo=b=|a=B"b|

where B! is an integer 64 x 64 matrix.
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C!-Continuity

Interpolation is obviously
Cl-continuous inside the

cube.

boundaries?

Is it on the

z Pg P7
Pa P
S
Py P3
Po Py X

3 3 3
f(x,y,z) Z Z Z a,jkxiyjzk
i=0
3

%(x,y, Zzzlaykxi_lyjzk

3
2 j—o dik = bik

f(x,1,0) = boo 4 biox + baox> + azox’

%(Xv 1,0) = b1o + 2b2ox + 3b3ox?

flp2 = boo

flps = boo + bioo + b200 + b3o
=9 of

Fxlp2 = b1o

%‘P:& = b1o + 2b20 + 3b3o

Which is the same interpolation.

We can repeat for all faces and all edges to check that we are
continuous everywhere.
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Tricubic Interpolation

This Tricubic Interpolation has been implemented in a Python
package.
@ It can use exact derivatives if provided, or use finite differences
to estimate them.

@ It has been thoroughly tested to check that it can exactly
reconstruct any “tricubic” polynomial when using exact
derivatives.

@ It can be found in
https://github.com/kparasch/Tricubiclnterpolation/.
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Section 5

Examples
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Problem #1 - Simulation can be (very) Noisy

At x = Ax,y =0:

2| @ Discrete-Poinis ®  Discrete Points
—— Trcubic Interpolation 5 —— Tricubic Interpolation
—-3 E o0
—
=) =
< oo
&) 5
—4
—10
-5 —-0.3 —0.2 —0.1 0.0 0.1 0.2 0.3 —-0.3 —0.2 —0.1 0.0 0.1 0.2 0.3
¢ [m] ¢ [m)

@ Interpolation of ¢ is flawless.

@ Derivative on the other hand can be very noisy.
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Problem #1 - Pinch is Noisy

At x = Ax,y =0:

2 2
10 0. 10

~0.3 —0.2 —0.1 CO[.O] 0.1 02 03 “L93%  —oa1s  —o16  —o014  —o01z  —o.10
Zoom in ¢ € (—0.2,—0.1) of
left figure.

@ Even for noisy simulations of pinches, interpolation scheme
does not disappoint.

@ Simulation of the pinch still suffers from macroparticle noise.

@ Solution: Reduce noise by averaging many pinches.
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Problem #1 - Pinch is Noisy

At x = Ax,y =0:

0.00) Lo 0.0 ®  Discrete Points
—0.25 —0.2 : ’
E 050 E 04
= =
£—0.75 ;5—0.6
—1.00
0.8
—rasf
—-0.3 —0.2 —0.1 0.0 0.1 0.2 0.3 _IJQ)A‘Z() —0.18 —0.16 —0.14 —0.12 —0.10
¢ml ¢l
Zoom in ¢ € (—0.2,—-0.1) of
left figure.
14.8
3 14.4
@ Averaging 2000 pinches reveals %g-g
clear structure. 0 13.2
_ _ : 12.8
@ Interpolation scheme is looks good. - 12.4
12.0
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If step size is not small enough

Worst case is when we look with respect to a transverse direction.
The potential flips very quickly. (Beam sigma here is 3.66 - 10~* m)

10?

{ ® | DataPis
— it
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If step size is not small enough

Worst case is when we look with respect to a transverse direction.
The potential flips very quickly. (Beam sigma here is 3.66 - 10~* m)

10?

0
x [m] x10~4

Very sharp changes can lead to unnatural "wiggles” inbetween cells.
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If step size is not small enough

Worst case is when we look with respect to a transverse direction.
The potential flips very quickly. (Beam sigma here is 3.66 - 10~* m)

10?

® DataPis
®  Undersampled Data Pts.
—Tric

—— Undersampled Tri. Int

0
x [m] x10~4

Very sharp changes can lead to unnatural "wiggles” inbetween cells.
Through undersampling, the bumps get worse. We need to find a
way to quantify and control these artifacts.
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Conclusions

@ We symplectified our kick by using the Tricubic Interpolation
scheme.

@ We implemented the Tricubic Interpolation in a tested Python
package.

@ We studied the behaviour of the interpolation scheme in order
to predict possible problems.
Next steps:

@ See if the interpolation can be improved or if the “wiggles” can
be quantified.

@ Begin some preliminary tracking in PySixtrack.

@ Do some serious tracking with SixTrackLib.
| thank you for your attention!
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Appendices



Kinks

Can the kinks be the artifact of the other dimensions7

o DT
i=0 j=0 k=0
Py Ps af 3 3
y O )= 33 i
P2 Ps i=1 j=0 k=0
y,z=0
Po Py X R
On an edge of the cube,
f(x,0,0) = cooo + 100X + 200%> + 300%> . .
o ’0 ) ) 3 ) the interpolation depends
% (%, 0,0) = @100 + 20:200% + 3r300X only on the values of the
floo = ctooo function and its derivative
- flps = w000 + 100 + Q200 + 4300 with respect to the
%‘po = Q100 independent variable of the
28 |py = 100 + 20200 + 3t300 edge. Answer is no!

2/9



Symplecticity - Why
Violation of symplecticity implies that integrals of motion are no
longer conserved. Long-term tracking simulations can lead to
wrong conclusions.
Consider a linear one-turn map M and

@ a thick quadrupole map:

(3) = (Lotbag dsmas) ()

@ a 1st order Taylor approximation of thick quadrupole:
X 1 As X
(2),0 (iae 34 (2),

M= Cos 1 + asin Bsinp
- —ysinp CoS 1 — asin

with
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Non-Symplectic Tracking

Tracking with a large symplectic error (k = 0.3, As = 0.1):

@ Turns = 100

@ Turns

= 1000

@ Turns = 10000

Leesessaag,

o) EXN
Rt
o

®  non-symplectic

non-symplectic

symplectic

@®  symplectic
05
*
2
.,
e,
.., 0
10 Crrrpnaett
~io B w5 5 o

cos(kAs)

XX’) i <—k sin(kAs)

X 1 As
(X/>H17<7k2A5 1).M' (

% sin(kAs)

cos(kAs)
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Non-Symplectic Tracking

Tracking with a small symplectic error (k = 0.3, As = 0.01):
@ Turns = 1000

Turns = 100

—Lov,

*****

EH i i S
.7 ~
. .
.
.
L
.
1 ®  non-symplectic
) N
L @®  symplectic
.
iy
A
.
-~ 0

1
s
i
1]

X

(:

/

100 —0.7 0.0 —02s 000 D3 050 0.5 L00

@ Turns = 10000

100 1o
0.73)
0.50) 0]
0.25]

@® non-symplectic ® non-symplectic
0.00) 00

@ | symplectic ®  symplectic
025
050 —05
075
100 —10

= G 00 3 o

cos(kAs)

) i (—ksin(kAs)

% sin(kAs)
cos(kAs)

700 —0.75 —0.50 0.2 000 025 050 045 10D

)

X
/
X

> ( :
= 2
i+1 —k“As

SERE
If the symplectic error is small, is symplecticity actually
necessary?

),
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Symplectifying in 6D

Given a regular grid of a scalar potential ¢('¥) at regular steps of ¢,
produce a symplectic thin-lens 6D kick.

X = X

gL 9¢
Px = Px B2ymc? dx (XaY>C)
y—=y

gL 9¢
py = py - 527mc2(97y X;y;C)
¢ ¢

§ =04 f(x,y,()

where f(x,y,() is an arbitrary
function of x, y, (. In addition to
the previous condition, f(x,y, ()
must satisfy:

of  qL 0 [(9¢
= i (5)
of gl (0
6y__62’ymc26c‘<8y)

3Thin-lens in the sense that x, y, ¢ remain unchanged.
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Symplectifying in 6D
First condition

JOF gl 0 (90
®ox "~ B2ymc2 9¢ \ dx

Integration gives:

o¢
f -

(X7y7 C) / 52"ymc2 8< ( ) dX
Because we approximate ¢ such that it has globally continuous
derivatives,

L 0
f(vavg):_ 9 ¢(X7y7€)+g(y7C)

B2ymc? a¢

where g(y, () is again an arbitrary function.
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Symplectifying in 6D

gt 9¢
B2ymc2 0¢

Second condition:

@ Replacing f into the other condition:
of ___ab 9 (99
dy — FPymc2 9¢ \ dy
We arrive to

f(x,y,0) = (x,¥,¢) + &y ()

og
8—)’—0

which means that

g(y,¢) = g(¢)
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Symplectic Kick

Summary

The 6D map will be symplectic for all momentum deviation kicks of
the form

L 0¢
W%(X,%C)Jrg(()

with an arbitrary g(¢{) function.

O 0 —

The simplest choice is to set g(¢) = 0. Analytical calculations on
the physical thin-lens approximation® of the electron cloud
interaction on the beam particles arrive on the same map with

g(¢)=0.

3See future presentation.
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