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Motivation

Throughout 2017 operation, abnormal losses were observed in the LHC
* Located in the half-cell ‘16’ Left of Point 2 (16L2)

68 premature dumps with the following signature occurred during 2017:
* Sudden onset of high beam losses in 1612

* Coherent beam motion with extremely fast rise times (~1-100 turns)

 Beam dump either due to losses on the collimation system or directly in 16L2

To stay operational, the LHC was limited to fewer than the nominal number of
bunches for most of the 2017 run. Several 16L2 events occurred also in 2018.
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Sequence of events in 16L2

The problems in 16L2 were caused by air frozen inside the beam chamber, through the
following sequence of events:

/ K2 €5y frozen air
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Sequence of events in 16L2

The problems in 16L2 were caused by air frozen inside the beam chamber, through the
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Sequence of events in 16L2

The problems in 16L2 were caused by air frozen inside the beam chamber, through the

following sequence of events:
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Sequence of events in 16L2

The problems in 16L2 were caused by air frozen inside the beam chamber, through the
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Sequence of events in 16L2

The problems in 16L2 were caused by air frozen inside the beam chamber, through the

following sequence of events:
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Sequence of events in 16L2

The problems in 16L2 were caused by air frozen inside the beam chamber, through the
following sequence of events:

/ 2 5 frozen air

A macro-particle of frozen air S
(N,, O,) is detached, @ beam
triggered by e-cloud? C%
and enters the beam ™3 . ' o  electron
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o macro-particle
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The macro-particle undergoes a
phase transition to a gas, leading >
to a a high local gas density

ion

Our aim is to model the last part of this
seguence of events:

The beam ionizes some of the gas . I
. : ) : o If we assume a high gas density in the beam
in its path. Its interaction with the

P e chamber, can we reproduce the observations
the fast instabilities in a consistent manner?
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Information from loss observations

The events take place around the interconnect = mostly a field free region
* The source of the losses can be at most a few (~3) meters long

The gas density could be estimated based on the loss rates:

* In 2017 events, the density range was 10'° — 10%! L-'m™?, for gas covering the length L
* Thisis assuming N, gas that extends over the full transverse beam cross section

A. Lechner et al IPAC 2018
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Multi-species PyECLOUD

Multiple clouds were enabled in PyECLOUD to model the 16L2 events

e Simulations show significantly different dynamics from a gas density of around
1029 N,/m?3 when ions and electrons are simulated together

* In particular the electrons behave very differently in the presence of ions
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Multi-species build-up

e For high gas densities the electron and ion densities saturate at the same values
— The densities at saturation depend roughly linearly on the gas density
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Stability studies

The first multi-species beam dynamics simulations show instabilities from gas densities of
1022 N,/m3 over the length L = 10 cm, corresponding to 10%! LIm2

* This covers only the upper range of the observed instabilities in the machine
(101° - 1021 L Im2)

* Electron-induced ionization may help to increase the electron and ion densities for a
given gas density
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Electron-induced ionization

The simulation model considers only beam-induced ionization, but additional electrons and
ions may be produced by the interaction of the gas with the e-cloud itself

* Electronsin the energy range of 50 — 500 eV have a 50 — 100 times larger ionization
cross section than the beam particles

 The amount of ionization depends on the electron energy distribution

. . . 3 -
Saving of energy histograms in PyECLOUD BUG et al., Phys. Rev E.88 N
* Previously only impacting particle energies
were stored during the simulations — ol
5
: E
 The option to record energy =
H . . o 1
histograms of all particles was implemented ° ® ltkawa
(L. Giacomel) 4 Rapp
BEB model
0 '
L . . 10' 10° 10°
Cross-ionization module under implementation Electron energy (eV)

FIG. 1. (Color online) Electron-impact-ionization cross sections
Oion Of nitrogen recommended by Itikawa [16], measured by Rapp and

Englander-Golden [17], and determined using the BEB model [18].
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Outline

Further investigation of build-up
— Electron energy spectrum

— Electric fields
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Electron energy spectrum

Electron energy spectra averaged over the passage of a BCMS bunch train (48 b)
at 6.5 TeV for different gas densities
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Number of electrons

Electron energy spectrum

Comparing the energy spectrum against single-species electron simulations
* With 10* N,/m3, the ions barely impact the energy spectrum
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Number of electrons

Electron energy spectrum

Comparing the energy spectrum against single-species electron simulations

* With 10® N,/m3, the number of electrons is increased, but the energy spectrum is
not affected much
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Number of electrons
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Electron energy

spectrum

Comparing the energy spectrum against single-species electron simulations
With 10%° N,/m3, the shape of the energy spectrum is significantly changed
Also the single-species spectrum is slightly modified compared to lower densities
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Number of electrons

Electron energy spectrum

Comparing the energy spectrum against single-species electron simulations
* Above 10%° N,/m3, the shape of the energy spectrum is significantly changed
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Electron energy spectrum

Comparing the energy spectrum against single-species electron simulations
* Above 10%° N,/m3, the shape of the energy spectrum is significantly changed
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Number of electrons

Electron energy spectrum

Comparing the energy spectrum against single-species electron simulations
* Above 10%° N,/m3, the shape of the energy spectrum is significantly changed
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Electron energy spectrum

The electron energy distribution changes significantly when the gas density increases
* The distribution shifts towards higher energies for higher gas densities
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Electron energy spectrum

The electron energy distribution changes significantly when the gas density increases
* The distribution shifts towards higher energies for higher gas densities
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lon energy spectrum

lon energy spectra averaged over the passage of a BCMS bunch train (48 b) at 6.5 TeV
for different gas densities
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lon energy spectrum

Also the ion energy distribution changes significantly when the gas density increases
* Asfor the electrons, a significant effect on the spectrum is seen as of 102° N,/m3
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Average electron energy

Comparing the average electron energies at every time step during a BCMS bunch
train passage against single-species electron simulations

*  With 108 N,/m3, the impact of the ions is negligible
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Average electron energy

Comparing the average electron energies at every time step during a BCMS bunch
train passage against single-species electron simulations
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Average electron energy

Comparing the average electron energies at every time step during a BCMS bunch
train passage against single-species electron simulations
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Average electron energy

Comparing the average electron energies at every time step during a BCMS bunch
train passage against single-species electron simulations

* For higher densities, the energy between bunch passages is significantly higher
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Average electron energy

Comparing the average electron energies at every time step during a BCMS bunch
train passage against single-species electron simulations

* For higher densities, the energy between bunch passages is significantly higher
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Average electron energy

Comparing the average electron energies at every time step during a BCMS bunch
train passage against single-species electron simulations

¢ With 1023 N,/m3, the bunch passage is barely seen on the electron energies
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Average electron energy

The energy during bunch passages is independent of the gas density (below 1023 m3)
 The energy between bunch passages increases for higher gas densities
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Average electron energy

The energy during bunch passages is independent of the gas density (below 1023 m3)
 The energy between bunch passages increases for higher gas densities
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Average ion energy

The ion energies are barely affected by the bunch passages
* For any given gas density the ion energies are higher than the electron energies
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Electric fields

The observations with 1023 N,/m3, can be understood by comparing the electric fields
of the beam, electron and ion charge distributions during a 25 ns bunch passage
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Electric fields

The observations with 1023 N,/m3, can be understood by comparing the electric fields
of the beam, electron and ion charge distributions during a 25 ns bunch passage
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Electric fields

The observations with 1023 N,/m3, can be understood by comparing the electric fields
of the beam, electron and ion charge distributions during a 25 ns bunch passage
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Electric fields

The observations with 1023 N,/m3, can be understood by comparing the electric fields
of the beam, electron and ion charge distributions during a 25 ns bunch passage

 When the head of the bunch is passing, the electron field is the strongest
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Ex [V/m]

1.5

0.5

0.0

Electric fields

The observations with 1023 N,/m3, can be understood by comparing the electric fields
of the beam, electron and ion charge distributions during a 25 ns bunch passage

* When the head of the bunch is passing, the electron field is the strongest
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Ex [V/m]

Electric fields

The observations with 1023 N,/m3, can be understood by comparing the electric fields
of the beam, electron and ion charge distributions during a 25 ns bunch passage

 When the bunch centroid passes, the ion field is the strongest
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Ex [V/m]

Electric fields

The observations with 1023 N,/m3, can be understood by comparing the electric fields
of the beam, electron and ion charge distributions during a 25 ns bunch passage

* The ion field grows until the tail of the bunch has passed
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Ex [V/m]

Electric fields

The observations with 1023 N,/m3, can be understood by comparing the electric fields
of the beam, electron and ion charge distributions during a 25 ns bunch passage

* Theion field grows until the tail of the bunch has passed

10% N,/m®, dt = 0.3 ns
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Ex [V/m]

Electric fields

The observations with 1023 N,/m3, can be understood by comparing the electric fields
of the beam, electron and ion charge distributions during a 25 ns bunch passage

* Theion field grows until the tail of the bunch has passed
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Ex [V/m]

Electric fields

The observations with 1023 N,/m3, can be understood by comparing the electric fields
of the beam, electron and ion charge distributions during a 25 ns bunch passage

* Theion field grows until the tail of the bunch has passed
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Ex [V/m]

Electric fields

The observations with 1023 N,/m3, can be understood by comparing the electric fields
of the beam, electron and ion charge distributions during a 25 ns bunch passage

 Astheions are relatively slow, the field strength decreases slowly over several ns
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Ex [V/m]

Electric fields

The observations with 1023 N,/m3, can be understood by comparing the electric fields
of the beam, electron and ion charge distributions during a 25 ns bunch passage

 Astheions are relatively slow, the field strength decreases slowly over several ns
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Ex [V/m]

Electric fields

The observations with 1023 N,/m3, can be understood by comparing the electric fields
of the beam, electron and ion charge distributions during a 25 ns bunch passage

 Astheions are relatively slow, the field strength decreases slowly over several ns
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Ex [V/m]

Electric fields

The observations with 1023 N,/m3, can be understood by comparing the electric fields
of the beam, electron and ion charge distributions during a 25 ns bunch passage

 Astheions are relatively slow, the field strength decreases slowly over several ns
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Ex [V/m]

Electric fields

The observations with 1023 N,/m3, can be understood by comparing the electric fields
of the beam, electron and ion charge distributions during a 25 ns bunch passage

* About 6 ns after the bunch passage, the ion field peak equals the peak beam field
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Ex [V/m]

Electric fields

The observations with 1023 N,/m3, can be understood by comparing the electric fields
of the beam, electron and ion charge distributions during a 25 ns bunch passage

e OQutside the centre, the ion field remains higher than the bunch centroid field
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Ex [V/m]

Electric fields

The observations with 1023 N,/m3, can be understood by comparing the electric fields
of the beam, electron and ion charge distributions during a 25 ns bunch passage

e OQutside the centre, the ion field remains higher than the bunch centroid field
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Ex [V/m]

Electric fields

The observations with 1023 N,/m3, can be understood by comparing the electric fields
of the beam, electron and ion charge distributions during a 25 ns bunch passage

* Outside the centre, the ion field remains higher than the bunch centroid field

10** Ny/m®, dt = 10.5 ns
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Ex [V/m]

Electric fields

The observations with 1023 N,/m3, can be understood by comparing the electric fields
of the beam, electron and ion charge distributions during a 25 ns bunch passage

* Outside the centre, the ion field remains higher than the bunch centroid field

10 N,/m’, dt = 12.9 ns
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Ex [V/m]

Electric fields

The observations with 1023 N,/m3, can be understood by comparing the electric fields
of the beam, electron and ion charge distributions during a 25 ns bunch passage
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Outside the centre, the ion field remains higher than the bunch centroid field

10* Ny/m®, dt = 15.3 ns 10% Ny/m*, dt = 15.3 ns
1e7
Peak beam field Peak beam field
Beam Beam
—— lons 15 —— lons
— Electrons —— Electrons
E 1.0
=,
>
L
0.5

0.0 =

10 15 20 0 2 4 6 8 10 12 14 16 18
x [mm] y [mm]

61



Ex [V/m]

Electric fields

The observations with 1023 N,/m3, can be understood by comparing the electric fields
of the beam, electron and ion charge distributions during a 25 ns bunch passage

* Outside the centre, the ion field remains higher than the bunch centroid field
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Ex [V/m]

With gas densities of 1022 N,/m?* and below, the beam field during the centroid
passage is stronger than the peak ion field

lon electric fields

However, the ion field is present also between bunch passages

Peak ion electric field
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lon electric fields

With gas densities of 1022 N,/m?* and below, the beam field during the centroid
passage is stronger than the peak ion field

* However, the ion field is present also between bunch passages

Peak ion electric field
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Electron motion

N, gas, 10" m™*

e density
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Electron motion

N, gas, 10* m™*

e density
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lon motion

N, gas, 10" m™*

N," density
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lon motion

N, gas, 10* m™*

N," density
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lon motion

N, gas, 10* m™*

N," density
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“Rings” in the ion distribution consist of ions generated at different bunch passages
 The number of rings corresponds to the time it takes for the ions to reach the

lon distribution

chamber wall and is determined by the ion e-field
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lon distribution

The number of “ion rings” corresponds to the rise time of the average densities
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lon distribution

The number of “ion rings” corresponds to the rise time of the average densities
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Conclusions

The dynamics of the electron-ion system are largely determined by the electric field of
the ion distribution

* Non-trivial dynamics occur for gas densities of 102° N,/m3 and above

* For gas densities of 1023 N,/m3, the ion electric field is stronger than the beam
field 2 energies in the keV range

In particular for gas densities in the range 10%° — 1022 N,/m3, electron energies are
favourable for electron impact-ionization



76



Build-up with different parameters

Before setting up instability studies with saved electron and ion distributions, we wanted to
study how these depend on various parameters

* At lower gas densities, the electron density at saturation depends on the SEY
(threshold at 1.4-1.45)
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Build-up with different parameters

Before setting up instability studies with saved electron and ion distributions, we wanted to
study how these depend on various parameters

* Above threshold the electron density doesn’t depend very strongly on the SEY
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