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Motivation

Throughout 2017 operation, abnormal losses were observed in the LHC 

• Located in the half-cell ‘16’ Left of Point 2 (16L2)

68 premature dumps with the following signature occurred during 2017: 

• Sudden onset of high beam losses in 16L2

• Coherent beam motion with extremely fast rise times (~1–100 turns)

• Beam dump either due to losses on the collimation system or directly in 16L2

To stay operational, the LHC was limited to fewer than the nominal number of 
bunches for most of the 2017 run. Several 16L2 events occurred also in 2018.
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Sequence of events in 16L2

The problems in 16L2 were caused by air frozen inside the beam chamber, through the 
following sequence of events:
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Information from loss observations

The events take place around the interconnectmostly a field free region

• The source of the losses can be at most a few (~3) meters long

The gas density could be estimated based on the loss rates:

• In 2017 events, the density range was 1019 – 1021 L-1m-2, for gas covering the length L

• This is assuming N2 gas that extends over the full transverse beam cross section
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Multi-species PyECLOUD

Multiple clouds were enabled in PyECLOUD to model the 16L2 events

• Simulations show significantly different dynamics from a gas density of around 
1020 N2/m3 when ions and electrons are simulated together

• In particular the electrons behave very differently in the presence of ions
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Multi-species build-up

• For high gas densities the electron and ion densities saturate at the same values

– The densities at saturation depend roughly linearly on the gas density
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Stability studies

The first multi-species beam dynamics simulations show instabilities from gas densities of 
1022 N2/m3 over the length L = 10 cm, corresponding to 1021 L-1m-2

• This covers only the upper range of the observed instabilities in the machine 
(1019 – 1021 L-1m-2)

• Electron-induced ionization may help to increase the electron and ion densities for a 
given gas density
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Electron-induced ionization

The simulation model considers only beam-induced ionization, but additional electrons and 
ions may be produced by the interaction of the gas with the e-cloud itself

• Electrons in the energy range of 50 – 500 eV have a 50 – 100 times larger ionization 
cross section than the beam particles

• The amount of ionization depends on the electron energy distribution

Saving of energy histograms in PyECLOUD

• Previously only impacting particle energies 
were stored during the simulations

• The option to record energy 
histograms of all particles was implemented  
(L. Giacomel)

Cross-ionization module under implementation 
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Electron energy spectrum

Electron energy spectra averaged over the passage of a BCMS bunch train (48 b) 
at 6.5 TeV for different gas densities
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Electron energy spectrum

Comparing the energy spectrum against single-species electron simulations

• With 1018 N2/m3, the ions barely impact the energy spectrum 
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Electron energy spectrum

Comparing the energy spectrum against single-species electron simulations

• With 1019 N2/m3, the number of electrons is increased, but the energy spectrum is 
not affected much
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Electron energy spectrum

Comparing the energy spectrum against single-species electron simulations

• With 1020 N2/m3, the shape of the energy spectrum is significantly changed

• Also the single-species spectrum is slightly modified compared to lower densities
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Electron energy spectrum

The electron energy distribution changes significantly when the gas density increases

• The distribution shifts towards higher energies for higher gas densities 
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Electron energy spectrum

The electron energy distribution changes significantly when the gas density increases

• The distribution shifts towards higher energies for higher gas densities 
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Ion energy spectrum

Ion energy spectra averaged over the passage of a BCMS bunch train (48 b) at 6.5 TeV
for different gas densities
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Ion energy spectrum

Also the ion energy distribution changes significantly when the gas density increases

• As for the electrons, a significant effect on the spectrum is seen as of 1020 N2/m3
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Average electron energy

Comparing the average electron energies at every time step during a BCMS bunch 
train passage against single-species electron simulations

• With 1018 N2/m3, the impact of the ions is negligible
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Average electron energy

Comparing the average electron energies at every time step during a BCMS bunch 
train passage against single-species electron simulations

• With 1019 N2/m3, the energy between bunch passages is slightly higher
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Average electron energy

Comparing the average electron energies at every time step during a BCMS bunch 
train passage against single-species electron simulations

• With 1023 N2/m3, the bunch passage is barely seen on the electron energies
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Average electron energy

The energy during bunch passages is independent of the gas density (below 1023 m-3)

• The energy between bunch passages increases for higher gas densities 
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Average electron energy

The energy during bunch passages is independent of the gas density (below 1023 m-3)

• The energy between bunch passages increases for higher gas densities 
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Average ion energy

The ion energies are barely affected by the bunch passages

• For any given gas density the ion energies are higher than the electron energies
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Electric fields

The observations with 1023 N2/m3, can be understood by comparing the electric fields 
of the beam, electron and ion charge distributions during a 25 ns bunch passage
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Electric fields
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The observations with 1023 N2/m3, can be understood by comparing the electric fields 
of the beam, electron and ion charge distributions during a 25 ns bunch passage

• When the bunch centroid passes, the ion field is the strongest



Electric fields
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Electric fields
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The observations with 1023 N2/m3, can be understood by comparing the electric fields 
of the beam, electron and ion charge distributions during a 25 ns bunch passage

• About 6 ns after the bunch passage, the ion field peak equals the peak beam field



Electric fields
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Ion electric fields

With gas densities of 1022 N2/m3 and below, the beam field during the centroid 
passage is stronger than the peak ion field

• However, the ion field is present also between bunch passages
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Electron motion
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Electron motion
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Ion motion
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Ion motion
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Ion distribution

“Rings” in the ion distribution consist of ions generated at different bunch passages
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“Rings” in the ion distribution consist of ions generated at different bunch passages

• The number of rings corresponds to the time it takes for the ions to reach the 
chamber wall and is determined by the ion e-field
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Ion distribution

The number of “ion rings” corresponds to the rise time of the average densities
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Ion distribution

The number of “ion rings” corresponds to the rise time of the average densities
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Conclusions

The dynamics of the electron-ion system are largely determined by the electric field of 
the ion distribution

• Non-trivial dynamics occur for gas densities of 1020 N2/m-3 and above

• For gas densities of 1023 N2/m-3, the ion electric field is stronger than the beam 
field  energies in the keV range

In particular for gas densities in the range 1020 – 1022 N2/m-3, electron energies are 
favourable for electron impact-ionization
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Build-up with different parameters

Before setting up instability studies with saved electron and ion distributions, we wanted to 
study how these depend on various parameters

• At lower gas densities, the electron density at saturation depends on the SEY 
(threshold at 1.4-1.45)
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Build-up with different parameters

Before setting up instability studies with saved electron and ion distributions, we wanted to 
study how these depend on various parameters 

• Above threshold the electron density doesn’t depend very strongly on the SEY
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