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•40 MHz in / 100 KHz out

•~ 500 KB / event

•Processing time: ~10 μs

•Based on coarse local reconstructions

•FPGAs / Hardware implemented
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•100 KHz in / 1 KHz out

•~ 500 KB / event

•Processing time: ~100 ms

•Based on simplified global reconstructions

•Software implemented on CPUs
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•1 KHz in / 1.2 kHz out

•~ 1 MB / 200 kB / 30 kB per event

•Processing time: ~20 s

•Based on accurate global reconstructions

•Software implemented on CPUs
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•Up to ~ 500 Hz In / 100-1000 events 
out

•<30 KB per event

•Processing time irrelevant

•User-written code + centrally 
produced selection algorithms
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LHC future and its big 
challenge



HL-LHC: elephant in the room
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‣~200 collisions/event 
‣~minute/event processing time 
‣(at best)Same computing resources 
as today

This is when the R&D has to happen

‣~40 collisions/event 
‣~10 sec/event processing time 
‣(at best)Same computing resources as 
today

Today

5 interactions/beam cross 400 interactions/beam cross



HL-LHC: elephant in the room

!9

G. Cerati (UCSD) Vertex14 - 2014/09/18

Timing

10

• Both new seeding and cluster charge cut reduce timing of PixelLess and TobTec 
iterations by a factor 2x

• Benchmark timing and physics performance across releases and for di!erent pile-up
‣ TTbar samples with realistic alignment and calibration conditions

• PU scenarios:
‣ BX=25 ns, <PU>=25, 40, 70, 140 
‣ BX=50 ns, <PU>=25

• Iterative tracking time reduction (for BX=25 ns):
‣ 2x at PU=25, 3x at PU=40, 4x at PU=70

๏ Flat budget vs. more 
needs = current rule-
based reconstruction 
algorithms will not be 
sustainable 

๏ Adopted solution: more 
granular and complex 
detectors " more 
computing resources 
needed " more problems 

๏ Modern Machine Learning 
might be the way out



HL-LHC: elephant in the room
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The HGCAL Cells geometry
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To cope the irradiation / PU:
! η-dependent depletion of Si
! η-dependent cell size

Hexagonal 6” Si wafer (256 or 512 channels

Beam tests results
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๏ Flat budget vs. more 
needs = current rule-
based reconstruction 
algorithms will not be 
sustainable 

๏ Adopted solution: more 
granular and complex 
detectors " more 
computing resources 
needed " more problems 

๏ Modern Machine Learning 
might be the way out



๏ Possible  solution to the HL-LHC problem: Deep Learning to 
be faster and better in what we do today, freeing resources 
for new ideas 

๏ DL deployment needs to happen in between collisions and 
data analysis (trigger, reconstruction, …), where freeing 
resources will make a difference

Deep Learning and LHC Big Data
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๏ Future detectors will 
be 3D arrays of 
sensors with regular 
geometry 

๏ Ideal configuration 
to apply 
Convolutional Neural 
Network 

๏ speed up 
reconstruction at 
similar performances 

๏ and possibly improve 
performances

Particle reconstruction as image detection
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Deep Learning for Imaging Calorimetry

Vitoria Barin Pacela,⇤ Jean-Roch Vlimant, Maurizio Pierini, and Maria Spiropulu
California Institute of Technology and

CMS

We investigate particle reconstruction using Deep Learning, based on a dataset consisting of single-

particle energy showers in a highly-granular Linear Collider Detector calorimeter with a regular 3D

array of cells. We perform energy regression on photons, electrons, neutral and charged pions, and

discuss the performance of our model in each particle dataset.

I. INTRODUCTION

One the greatest challenges at the LHC at
CERN is to collect and analyse data e�ciently.
Sophisticated machine learning methods have
been researched to tackle this problem, such as
boosted decision trees and deep learning. In
this project, we are using deep neural networks
(DNN) [1] [2] to recognize images originated by
the collisions in the Linear Collider Detector
(LCD) calorimeter [3] [4], designed to operate
at the Compact Linear Collider (CLIC).

Preliminary studies have explored the possi-
bility of reconstructing particles from calorimet-
ric deposits using image recognition techniques
based on convolutional neural networks, using
a dataset of simulated hits of individual par-
ticles on the LCD surface. The dataset con-
sists of calorimetric showers produced by sin-
gle particles (pions, electrons or photons) hit-
ting the surface of an electromagnetic calorime-
ter (ECAL) and eventually showering within
a hadronic calorimeter (HCAL). This project
aimed at reconstructing the energy of particles
through regression.

The code used for defining the mod-
els and training the DNNs is hosted at
https://github.com/vitoriapacela/NotebooksLCD,
and analysis tools are hosted at
https://github.com/vitoriapacela/RegressionLCD.

⇤ vitoria.barinpacela@helsinki.fi

FIG. 1. Visualization of the data. Charged pion

event displayed in the ECAL and HCAL. Every hit

is shown in its respective cell in each of the calorime-

ters. Warmer colors (like orange and pink) repre-

sent higher energies, as 420 GeV, whereas colder

colors, like blue, represent lower energies, as 50

GeV.[5]

II. METHODS

The datasets were simulated as close as pos-
sible to real collision data, using a preliminary
version of the CLIC detector design, imple-
mented in the DDhep software framework [3].
They consist of 3D arrays representing energy
values in the cells of the ECAL and HCAL, and
the true energy of the particle. The ECAL data
arrays have shape 25 x 25 x 25, whereas the
HCAL data arrays have shape 4 x 4 x 60. Events
are of discrete, integer-valued energies over the
range 10-510 GeV, and fixed direction, so that
they impact the center of the calorimeter bar-
rel, with an impact angle of 90�. The datasets
for each particle are stored in the Hierarchical
Data Format (HDF5) [6], which is designed to
store and organize large amounts of data. Each
HDF5 file contains 10 000 events, and there are
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14Modern Deep NN’s for Classification

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully  
Connected 
ReLU Unit

ReLU Dropout ReLU Dropout
Local 

Response 
Normalization

W’→ WZ event

Convolutions
Convolved  

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 

Subsequent 
developments:

de Oliviera et al. 1511.05190

G. Kasieczka et al. 1701.08784 (top-tagging)

J. Barnard et al. 1609.00607 (W-tagging)
P. Komiske et al. 1612.01551 (q/g-tagging)

P. Baldi et al. 1603.09349 (W-tagging)

Convolved Feature Layers



๏ CMS uses PF to combine sub-detector information and produce a list of reconstructed particles 

๏ Anything (jets, MET, resonances, etc) is reconstructed from these particles 

๏ One could generalise the VAE new-physics-detection algorithm and make it PF compliant 

๏ integrated in the reconstruction flow @HLT 

๏ can abstract from model dependence inherited by any physics-motivated HLF choice

Particle Flow
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FIG. 3. Jet classification performance for various input rep-
resentations of the RNN classifier, using kt topologies for the
embedding. The plot shows that there is significant improve-
ment from removing the image processing step and that sig-
nificant gains can be made with more accurate measurements
of the 4-momenta.

FIG. 4. Jet classification performance of the RNN classifier
based on various network topologies for the embedding (par-
ticles scenario). This plot shows that topology is significant,
as supported by the fact that results for kt, C/A and desc-pT
topologies improve over results for anti-kt, asc-pT and random
binary trees. Best results are achieved for C/A and desc-pT
topologies, depending on the metric considered.

further supported by the poor performance of the random
binary tree topology. We expected however that a simple
sequence (represented as a degenerate binary tree) based
on ascending and descending pT ordering would not per-
form particularly well, particularly since the topology
does not use any angular information. Surprisingly, the
simple descending pT ordering slightly outperforms the
RNNs based on kt and C/A topologies. The descending
pT network has the highest pT 4-momenta near the root
of the tree, which we expect to be the most important.
We suspect this is the reason that the descending pT out-
performs the ascending pT ordering on particles, but this
is not supported by the performance on towers. A similar
observation was already made in the context of natural
languages [24–26], where tree-based models have at best
only slightly outperformed simpler sequence-based net-
works. While recursive networks appear as a principled
choice, it is conjectured that recurrent networks may in
fact be able to discover and implicitly use recursive com-
positional structure by themselves, without supervision.
d. Gating The last factor that we varied was

whether or not to incorporate gating in the RNN. Adding
gating increases the number of parameters to 48,761, but
this is still about 20 times smaller than the number of
parameters in the MaxOut architectures used in previ-
ous jet image studies. Table I shows the performance of
the various RNN topologies with gating. While results
improve significantly with gating, most notably in terms
of R✏=50%, the trends in terms of topologies remain un-
changed.
e. Other variants Finally, we also considered a num-

ber of other variants. For example, we jointly trained
a classifier with the concatenated embeddings obtained
over kt and anti-kt topologies, but saw no significant
performance gain. We also tested the performance of
recursive activations transferred across topologies. For
instance, we used the recursive activation learned with
a kt topology when applied to an anti-kt topology and
observed a significant loss in performance. We also con-
sidered particle and tower level inputs with an additional
trimming preprocessing step, which was used for the jet
image studies, but we saw a significant loss in perfor-
mance. While the trimming degraded classification per-
formance, we did not evaluate the robustness to pileup
that motivates trimming and other jet grooming proce-
dures.

B. Infrared and Collinear Safety Studies

In proposing variables to characterize substructure,
physicists have been equally concerned with classification
performance and the ability to ensure various theoretical
properties of those variables. In particular, initial work
on jet algorithms focused on the Infrared-Collinear (IRC)
safe conditions:

• Infrared safety. The model is robust to augmenting
e with additional particles {vN+1, . . . ,vN+K} with

Q C D - I N S P I R E D  R E C U R S I V E  N E U R A L  N E T W O R K S

15

kt

anti-kt

• choice of jet 
algorithm matters 

• GRU “gating” 
improves 
performance

anti-ktkt

LHC events & language processing
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๏ PF reco is not the best match for computing vision 
techniques (e.g., convolutional neural networks) don’t 
work  

๏ one would have to convert the particles to a pixelated 
images, loosing resolution 

๏ Instead, list of particles can be processed by Deep 
Learning architectures designed for natural language 
processing (RNN, LSTMs, GRUs, …) 

๏ particles as words in a sentence 

๏ QCD is the grammar



๏ A network architecture 
suitable to process an 
ordered sequence of inputs 

๏ words in text processing 

๏ a time series 

๏ particles in a list 

๏ Could be used for a single 
jet or the full event  

๏ Next step: graph networks 
(active research 
direction)

Recurrent Neural Networks
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Recurrent Neural Networks (RNNs)

I RNNs can process an arbitrarily length sequence

I Output is a fixed dimensional vector for each jet

dguest@cern.ch (UCI) RNN b-tagging May 9, 2017 11 / 20
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๏ CNNs assume that our detectors are 
regular arrays of sensors 

๏ Our detectors are not 

๏ different components with 
different technologies 

๏ some particle visible only to 
some part of the detector 

๏ CNNs don’t really fit the sparsity 
of the collision data 

๏ Instead, we think graph networks 
can work better 

Graph Networks for real detectors
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set of FOUT new vertex features, using a fully connected dense layer with tanh activation. The
concatenation is done for each initial vertex. In the case of the G��N�� layer, this requires
an additional step of passing the f̃ ik features of the vk aggregators back to the initial vertices,
weighted by the V(djk) potential. This information exchange of the garnered information
through the aggregators defines the G��N�� name.

The full process transforms the initial B ⇥ V ⇥ FIN data set into a B ⇥ V ⇥ FOUT data set. As
common with graph networks, the main advantage comes from the fact that the FOUT output (unlike
the FIN input) carries collective information from each vertex and its surrounding, providing a
more informative input to downstream processing. Thanks to the distinction between learned space
information S and learned features FLR, the dimensionality of connections in the graph is kept under
control, resulting in a smaller memory consumption than, for instance, the E���C��� layer.

The two layer architectures and the models based on them, described in the following sections,
are implemented in TensorFlow [36]. The code for the models and layers can be found in https:
//github.com/jkiesele/caloGraphNN.

Figure 2: Calorimeter geometry. The markers indicate the centre of the sensors, their size the
sensor size. Layers are colour-coded for better visualisation.

4 Data set

The data set used in this paper is based on a simplified calorimeter with irregular geometry, built in
GEANT4 [37]. The calorimeter has a width of 30 cm⇥30 cm in the x and y directions and length of
2 m in the longitudinal direction (z), corresponding to 20 nuclear interaction lengths. It is entirely
made out of Tungsten, further split into 20 layers of equal width in z. Each layer contains square

– 6 –



๏ What a graph network 
does is projecting a 
set of point into some 
other space where the 
concept of nearby 
(related to affinity) 
is learned 

๏ Such a concept allows 
to abstract from the 
geometry of a detector 
and design experiment-
independent 
architectures

Learning representation

 17

s1

s2

FIN

FLR

S

}
}{

(a) (b) (c)
di2

di1

dj2
dj1

(e)(d)

vk

v1

v2

v3

v4

f2
i

f3
i

f4
i

d1k

d2k

d3k

d4k

f1
i

fj
i

  ifjk = fj ×V(djk)
~i

Max( fjk)~i
j

Σ fjk
~i

j
fk =  ~i {

…

FOUT}
FIN{
FLR{’

FLR{’’

~

~

Figure 1: Pictorial representation of the data flow across the G��N�� and the G���N�� layers.
(a) The input features FIN of each vi 2 V are processed by a dense neural network with two output
layers: a set of learned features FLR and a spatial information S in some learned representation
space. (b) In the case of the G���N�� layer, the S quantities are interpreted as the coordinates of
the vertices in some abstract space. The graph is built in this space, connecting each vi to its N
closest neighbors (N=4 in the figure), using the euclidean distance di j between the vertices to rank
the neighbors. (c) In the case of the G��N�� layer, the S quantities are interpreted as the distances
between the vertices and a set of S aggregators in some abstract space. The graph is then built
connecting each vi vertex to each aj aggregator, and the S quantities are the di j euclidean distances.
(d) Once the graph structure is established, the f ij features of the vj vertices connected to a given
vertex or aggregator vk are converted into the f̃ ijk quantities, through a potential (function of djk .
The corresponding information is then gathered across the graph and turned into a new feature f̃ ik of
vk (e.g. summing over the edges, or taking the maximum. (e) For each choice of gathering function,
a new set of features f̃ ik 2 F̃LR is generated. The F̃LR vector is concatenated to the initial FIN vector.
The resulting feature vector is given as input to a dense neural network with tanh activation, which
returns the output representation FOUT.

– 4 –
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Interaction Networks
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NO: # of constituents

P:   # of features

NE = NO(NO-1): # of edges

DE: size of internal representations

DO: size of post-interaction internal representation

!C, "O , "R 

parameterized as 
neural networks

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: compression

 27

Train 
with L1

Retrain 
with L1

Prune

Prune

Retrain 
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Prune and repeat the train for 7 iterations

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

EHIRUH�SUXQLQJ

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

→ 70% reduction of weights 
and multiplications w/o 
performance loss
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Interaction Networks
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q/g

 t→Wb→qqb h→bb

 W/Z→qqb

Figure 1: Pictorial representation of ordinary quark and gluon jets (top left), b jets (top center), and
boosted-jet topology, emerging from high-pT W/Z bosons (top right), H bosons (bottom left), and
top quarks (bottom right) decaying to all-quarks final states.

Whenever a b subjet is present inside a jet, jet tagging capabilities go beyond the domain of jet
substructure. Due to their long lifetimes, b hadrons may travel O(mm) from the vertex of the
proton-proton collision before decaying to hadrons. Due to this, these hadrons originate from a
secondary vertex, displaced from the primary vertex. Modern particle detectors are all equipped
with a vertex detector and can accurately determine the position of the secondary vertices and their
separation from the primary vertex, even in a dense environment like a high-momentum jet. This
feature is particularly important for tagging a H boson decaying to a bottom quark-antiquark pair
(bb), since in these case both subjets may be associated to displaced vertices.

Recently, several approaches based on deep learning have been proposed to optimize jet tagging
algorithms (see Sec. 2), both using expert features with dense layers or raw data representations
(images or lists of particle properties) with more complex architectures. Recent work has investigated
the optimal way to combine substructure, tracking, and vertexing information to enhance the H ! bb

tagging efficiency.

In this work, we propose to accomplish this task with interaction networks (INs). The original
work on interaction network [3] focused on predicting the evolution of physical systems under the
influence of gravitational constraints, springs, and bounding boxes. This was achieved by constructing
graph networks and learning the interaction between the nodes of the graph. Here, we investigate
how to use INs to learn a collective representation of the jet substructure and use this optimized
representation to enhance the tagging efficiency for high-pT Higgs bosons decaying to bb pairs. We
only consider charged particles inside the jet, to derive an algorithm which is robust against the
presence of parasitic interactions in LHC collisions (pileup). Despite ignoring the information carried
by neutral particles, we are able to achieve better performances that state-of-the-art algorithms. The
key ingredient of the proposed algorithm is related to the representation of the jet as the combination
of a particle-to-particle and particle-to-vertex interaction, which is very natural in the context of INs.
In addition, we explore...

The study is carried on using a sample of fully-simulated LHC collision events, released by the CMS
collaboration on the CERN Open Data portal.

We compare the performance to a state-of-the-art deep learning algorithm, the CMS deep double-b
tagger [4]We use as a reference the algorithm trained with 2017 simulation as retraining it using the
2016 open data results in very similar performance. Overall, a significant improvement is observed,
even when the algorithm is constrained to be decorrelated from the jet mass through an adversarial
training. The algorithm and training code is available at Ref. [5].
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Figure 6: Performance of interaction network after applying adversarial training used to decrease
the degree to with the interaction network is dependent on the mass of the jet. This results in a lower
performance because the algorithm is forced to decorrelate jet mass, an important indicator of b-jets.

consisted of 1.4 million H ! bb jets and 330,000 inclusive QCD jets. The data are divided into a
samples for training (80%), validation (10%), and testing (10%). We use the same early stopping on
validation accuracy with a patience of 5 epochs.

We observe in Figure 9 that the interaction network tagger provides an improved performance against
DeepDoubleB. At a fixed 1% mistagging rate, the interaction improves almost 30% in tagging
efficiency. Likewise, at a 80% tagging efficiency working point, the interaction network yields a 40%
lower mistagging rate. The fact that the interaction network not only works but excels at drawing
from these abstract interactions between particles is a breakthrough for machine learning methods
at the LHC. This ability to understand non-physical systems carries with it many more applications
within CMS where abstract reasoning in complex systems could be useful.

The model was trained for a maximum of 100 epochs but implemented early stopping around 60
epochs, after it’s loss had not decreased for 5 epochs. It exhibited no overfitting and has converged on
a model before early stopping.

We see that the interaction network algorithm has very little dependence on pT, as seen in Figure 11.
While previous taggers like deep CSV and deep jet were highly dependent on jet pT, the interaction
network is hardly affected by changing jet momentum.

The interaction network algorithm exhibits minimal dependence on pileup as seen in Figure 12. This
means that the tagger is more robust towards changing pileup conditions, which is especially helpful
with higher luminosity beams which have an increased number of background pileup events.
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๏ Use autoencoders to learn 
standard Physics 

๏ Find new physics as 
“distant” events 

๏ Based on image and 
physics-inspired 
representations of jets  

 

Autoencoders
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Farina et al., arXiv:1808.08992

Heimel et al., arXiv:1808.08979

Figure 2: Distribution of reconstruction error computed with a CNN autoencoder on test samples of
QCD background (gray) and two signals: tops (blue) and 400GeV gluinos (orange).

We see that the autoencoder works as advertised: it learns to reconstruct the QCD

background that it has been trained on (to be precise, we train on 100k QCD jets and

then we evaluate the autoencoder on a separate sample of QCD jets), and it fails to

reconstruct the signals that it has never seen before. This is further illustrated in Fig. 3,

which shows the average QCD, top and gluino jet image before and after autoencoder

reconstruction. We see by eye that the QCD images are reconstructed well on average,

while the others contain more errors.

By sliding the reconstruction loss threshold L > LS around, we can turn the his-

tograms in Fig. 2 into ROC curves. The ROC curves for the di↵erent autoencoder

architectures are shown in Fig. 4 for the top and gluino signals. For comparison we have

also included the ROC curve obtained by cutting on jet mass as an anomaly threshold.

While the three architectures have comparable performances it is clear there are some

important di↵erences. For tops, the CNN outperforms the others, while for gluinos the

situation is largely reversed. Surprisingly, for gluinos, the CNN is even outperformed

by the humble PCA autoencoder at all but the lowest signal e�ciencies! We will ex-

plore this in more detail in section 4.2, but a clue as to what’s going on is shown in

the comparison of the PCA ROC curve with the jet mass ROC curve. For gluinos,

they track each other extremely closely, suggesting that the PCA reconstruction error is

highly correlated with jet mass. We will confirm this in section 4.2. Evidently, the PCA

autoencoder (and to a lesser extent the dense autoencoder) has learned to reconstruct

7

Figure 1: The schematic diagram of an autoencoder. The input is mapped into a low(er) dimensional
representation, in this case 6-dim, and then decoded.

threshold.

For concreteness, we will focus in this work on distinguishing “fat” QCD jets from

other types of heavier, boosted resonances decaying to jets. Building on previous work

on top tagging [12], we will concentrate on machine learning algorithms that take jet

images as inputs. For signal, we will consider all-hadronic top jets, as well as 400 GeV

gluinos decaying to 3 jets via RPV. Obviously, this is not meant to be an exhaustive

study of all possible backgrounds and signals and methods but is just meant to be a

proof of concept. The idea of autoencoders for anomaly detection is fully general and not

limited to these signals. We will comment on other forms of inputs in section 5. Moreover

there are many other anomaly detection techniques that are not based on autoencoder

and/or on reconstruction (loss) which are worth exploring in future work. At the same

time autoencoders have been recently used in other high energy physics applications:

in parton shower simulation [28], for feature selection of a supervised classification [30],

and for automated detection of detector aberrations in CMS [31].

We will explore various architectures for the autoencoder, from simple dense neural

networks to convolutional neural networks (CNNs), as well as a shallow linear represen-

tation in the form of Principal Component Analysis (PCA). We will see that while they

are all e↵ective at improving S/B by factors of ⇠ 10 or more, they have important dif-

ferences. The reconstruction errors of the dense and PCA autoencoders correlate more

highly with jet mass, leading to greater S/B improvement for the 400 GeV gluinos com-

pared to the CNN autoencoder. While this may seem better at first glance, we discuss

how one might want to use an autoencoder that is decorrelated with jet mass, in order

to obtain data-driven side-band estimates of the QCD background and perform a bump

hunt in jet mass. Indeed, we show how cutting on the reconstruction error of the CNN

autoencoder results in stable jet mass distributions, and we show how this can be used

to improve S/B by a factor of ⇠ 6 in a jet mass bump hunt for the 400 GeV gluino
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tagger [13]. It starts from a set of measured 4-vectors sorted by transverse momentum
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Following the left panel of Fig. 1 we use N = 40 constituents, after checking that an increase
to N = 120 does not make a measurable di↵erence. For jets with fewer constituents we
naturally fill the entries remaining in the soft regime with zeros.

To remove all information from the jet-level kinematics we boost all 4-momenta into the
rest frame of the fat jet. This also improves the performance of our network. Inspired
by recombination jet algorithms we can add linear combinations of these 4-vectors with a
trainable matrix Cij , defining a combination layer

kµ,i
CoLa�! ekµ,j = kµ,i Cij with C =

0
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1

CCA . (4)

We allow for M = 10 trainable linear combinations. These combined 4-vectors carry informa-
tion on the hadronically decaying massive particles. In the original LoLa approach we map
the momenta k̃j onto observable Lorentz scalars and related observables [13]. Because this
mapping is not easily invertible we do not use it for the autoencoder. Instead, we extend the
4-vectors by another component containing the invariant mass,

k̃j =

0

BB@

k̃0,j
k̃1,j
k̃2,j
k̃3,j

1

CCA
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BBBBBB@
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k̃2j

1

CCCCCCA
. (5)

This defines a set of 51 extended 4-vectors, which form the input to our neural network.
Again, we use Keras [35] combined with Tensorflow [36]. Its architecture is shown in
Fig. 3. The layer immediately after the LoLa contains 51 ⇥ (4 + 1) = 255 units. Between
the second layer after LoLa and the last layer, the autoencoder network is symmetric. The
final output consist of 40 4-vector-like objects, which can be compared with the corresponding

Figure 3: Architecture of the 4-vector-based autoencoder network. The 255 input units
correspond to 55 LoLa-vectors with 4+1 entries each. The output only consists of 160 units,
because the extended 4-vectors only carry four independent observables.
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๏ Anomaly defined as a p-value threshold on a given test statistics 

๏ Loss function an obvious choice 

๏ Some part of a loss could be more sensitive than others 

๏ We tested different options and found the total loss to behave better

Anomaly Detection

 22

Figure 6: Distribution of the loss Loss (left) and of its two components Lossreco (center) and DKL
(right) for the validation dataset. For comparison, the corresponding distribution for the four separate
SM processes and the four benchmark BSM models are shown. The vertical line represents a lower
threshold such that XXX% of the SM events would be retained.
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๏ Issues: 

๏ variable number of particles/event as input 

๏ need to return particles as output 

๏ The architecture is loosely inspired by the seq2seq* model used 
in neural machine translation https://arxiv.org/abs/1409.3215 

๏

VAE with PF particles

 23

๏ Networks used for 
translation 

๏ start from a 
sentence in language 

๏ code its meaning in 
some latent space z 

๏ translate to some 
other language, 
generating words 
from z

https://arxiv.org/abs/1409.3215


๏ A classic Dense NN manipulates 
the inputs in three ways 

๏ multiplying by weights 

๏ adding biases 

๏ applying activation 
functions 

๏ All these operations map 
nicely into an FPGA 

๏ high IO, DSPs, LUTs, tunable 
precision

Network Operations

 24

Javier Duarte I hls4ml !10

Neural Network
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Neural Network
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activation function

multiplication

addition

NN = multiplications, additions, and 
pre-computed activation functions

Maps nicely onto FPGA 
resources: high IO, 

DSPs, LUTs, etc.



Deep Learning at L1
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High-Level  

Trigger
L1 

trig
ger

1 KHz  
1 MB/evt

40 MHz

100 KHz

๏ To gain of Deep Learning, we want to bring it at L1 trigger 

๏ Need to deal with very small latency (<10 μsec) 

๏ Custom cards connected to detector electronics by optic links 

๏ Data flow in the cards one by one 

๏ Networks need to be implemented in FPGA firmware  

๏ advanced design by expert engineers (not common resource in HEP) 

๏ automatic translation tools doing the job
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compressed 
model

Keras 
TensorFlow 

PyTorch 
…

tune configuration
precision 


reuse/pipeline

HLS  
project

HLS  
conversion

Co-processing kernel

Custom firmware 
design

model

Usual ML  
software workflow

hls  4  ml

hls4ml

HLS  4  ML

!13

Design Exploration

๏ HLS4ML aims to be this automatic tool 

๏ reads as input models trained on standard DeepLearning libraries 

๏ comes with implementation of common ingredients (layers, activation functions, etc) 

๏ Uses HLS softwares to provide a firmware implementation of a given network 

๏ Could also be used to create co-processing kernels for HLT environments 

๏ It turns a neural network into an electronic circuit, emulated on the FPGA

HLS4ML
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Parallelisation
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TIMING 23

Behavior of pipeline 
interval controlled well 

by the reuse factor

Additional latency 
introduced by reusing 

the multipliers

15-40 clock cycles (75-200 ns)

RESOURCE USAGE 22

Tuning the throughput with reuse factor  
will reduce the DSP usage

Foreseen architecture (FPGAs) will handle these networks 
Inference-optimized GPUs could break the current paradigm 
Looking forward to R&D projects with nVidia & E4 on this



Deep Learning 4 HEP: A roadmap
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๏ We need to be ready by 2025 (High-Luminosity LHC) 

๏ LHC Run 3 (2020-2022) is the ultimate demonstration opportunity 

๏ for model building, deployment and commissioning 

๏ Strong synergy with other research lines in HEP  

๏ Dark Matter underground experiments 

๏ Neutrino experiments 

๏ Collaboration with nVidia to find optimal (performances & speed) 
solutions


