Deep Learning Applications for LHC experiments

Maurizio Pierini

https://www.youtube.com/watch?v=jDC3-QSiLB4

- 40 MHz in / 100 KHz out
- ~ 500 KB / event
- Processing time: ~10 µs
- Based on coarse local reconstructions
- FPGAs / Hardware implemented

Data Flow

- 100 KHz in / I KHz out
- ~ 500 KB / event
- Processing time: ~100 ms
- Based on simplified global reconstructions
- Software implemented on CPUs

- I KHz in / I.2 kHz out
- ~ | MB / 200 kB / 30 kB per event
- Processing time: ~20 s
- Based on accurate global reconstructions
- Software implemented on CPUs

- Up to ~ 500 Hz In / 100-1000 events out
- < 30 KB per event
- Processing time irrelevant
- User-written code + centrally produced selection algorithms

LHC future and its big challenge

HL-LHC: elephant in the room

400 interactions/beam cross

6 2017 2018 2019 2020 2021 2022 2023 2024 2025 2035

This is when the R&D has to happen

LHC Today

- ▶ ~40 collisions/event
- ▶ ~10 sec/event processing time
- ▶ (at best)Same computing resources as today 8

HL_LHC

- ▶~200 collisions/event
- ~minute/event processing time
- ▶ (at best)Same computing resources as today

HL-LHC: elephant in the room

- Flat budget vs. more
 needs = current rulebased reconstruction
 algorithms will not be
 sustainable
- Adopted solution: more granular and complex detectors → more computing resources needed → more problems
- Modern Machine Learning might be the way out

HL-LHC: elephant in the room

Flat budget vs. more
needs = current rulebased reconstruction
algorithms will not be
sustainable

• Adopted solution: more granular and complex detectors → more computing resources needed → more problems

Deep Learning and LHC Big Data

- Possible solution to the HL-LHC problem: Deep Learning to be <u>faster</u> and <u>better</u> in what we do today, freeing resources for new ideas
- DL deployment needs to happen in between collisions and data analysis (trigger, reconstruction, ...), where freeing resources will make a difference

Particle reconstruction as image detection

- Future detectors will be 3D arrays of sensors with regular geometry
- Ideal configuration to apply Convolutional Neural Network
 - speed up reconstruction at similar performances
 - and possibly improve performances

Particle Flou

- CMS uses PF to combine sub-detector information and produce a list of reconstructed particles
- Anything (jets, MET, resonances, etc) is reconstructed from these particles
- One could generalise the VAE new-physics-detection algorithm and make it PF compliant
 - integrated in the reconstruction flow @HLT
 - can abstract from model dependence inherited by any physics-motivated HLF choice

LHC events & language processing

- PF reco is not the best match for computing vision techniques (e.g., convolutional neural networks) don't work
 - one would have to convert the particles to a pixelated images, loosing resolution
- Instead, list of particles can be processed by Deep Learning architectures designed for natural language processing (RNN, LSTMs, GRUs, ...)

• particles as words in a sentence

• QCD is the grammar

Recurrent Meural Metworks

- A network architecture suitable to process an ordered sequence of inputs
 - words in text processing
 - a time series
 - particles in a list
- Could be used for a single jet or the full event
- Next step: graph networks (active research direction)

Graph Metworks for real detectors

- CNNs assume that our detectors are regular arrays of sensors
- Our detectors are not
 - different components with different technologies
 - some particle visible only to some part of the detector
- CNNs don't really fit the sparsity of the collision data
- Instead, we think graph networks can work better

Learning representation

• What a graph network does is projecting a set of point into some other space where the concept of nearby (related to affinity) is learned

Such a concept allows to abstract from the geometry of a detector and design experimentindependent architectures

https://arxiv.org/abs/1902.07987

Interaction Metworks

Interaction Metworks

N₀: # of constituents

P: # of features

 $N_E = N_O(N_O-1)$: # of edges

D_E: size of internal representations

Do: size of post-interaction internal representation

Interaction Metworks

Autoencoders

- Use autoencoders to learn standard Physics
- Find new physics as "distant" events
- Based on image and physics-inspired representations of jets

Farina et al., arXiv:1808.08992

Heimel et al., arXiv:1808.08979

$$ilde{k}_{j} = \begin{pmatrix} ilde{k}_{0,j} \\ ilde{k}_{1,j} \\ ilde{k}_{2,j} \\ ilde{k}_{3,j} \end{pmatrix} \stackrel{\text{LoLa}}{\longrightarrow} \begin{pmatrix} ilde{k}_{0,j} \\ ilde{k}_{1,j} \\ ilde{k}_{2,j} \\ ilde{k}_{3,j} \\ \sqrt{\tilde{k}_{j}^{2}} \end{pmatrix} .$$

Anomaly Detection

- Anomaly defined as a p-value threshold on a given test statistics
 - Loss function an obvious choice
 - Some part of a loss could be more sensitive than others
 - We tested different options and found the total loss to behave better

VAE with PF particles

- Issues:
 - variable number of particles/event as input
 - need to return particles as output
- Networks used for translation
- • start from a sentence in language
 - code its meaning in some latent space z
 - translate to some other language, generating words from z

<u> Network Operations</u>

- A classic Dense NN manipulate. the inputs in three ways
 - multiplying by weights
 - adding biases
 - applying activation functions
- All these operations map nicely into an FPGA
 - high IO, DSPs, LUTs, tunable precision

<u>Deep Learning at L1</u>

- Need to deal with very small latency (<10 μsec)
- Custom cards connected to detector electronics by optic links
- Data flow in the cards one by one
- Networks need to be implemented in FPGA firmware
 - advanced design by expert engineers (not common resource in HEP)
 - automatic translation tools doing the job

HUS4ML

- HLS4ML aims to be this automatic tool
 - reads as input models trained on standard DeepLearning libraries
 - comes with implementation of common ingredients (layers, activation functions, etc)
 - Uses HLS softwares to provide a firmware implementation of a given network
 - Could also be used to create co-processing kernels for HLT environments
- It turns a neural network into an electronic circuit, emulated on the FPGA

Parallelisation

Foreseen architecture (FPGAs) will handle these networks Inference-optimized GPUs could break the current paradigm Looking forward to R&D projects with nVidia & E4 on this

Deep Learning 4 HEP: A roadmap

- We need to be ready by 2025 (High-Luminosity LHC)
- LHC Run 3 (2020-2022) is the ultimate demonstration opportunity
 - for model building, deployment and commissioning
- Strong synergy with other research lines in HEP
 - Dark Matter underground experiments
 - Neutrino experiments
- © Collaboration with nVidia to find optimal (performances & speed) solutions

