

cern.ch/allpix-squared

Monte Carlo Simulations for Silicon Detectors

Bridging the Gap between Detector Design and Prototype Testing

Simon Spannagel, CERN

CERN Detector Seminar 12 April 2019

Introduction Particle Detection with Silicon Detectors

3 S. Spannagel - CERN Detector Seminar - Monte Carlo Simulations for Silicon Detectors 08/04/2019

Recap: Particle Detection with Silicon Detectors

ap

Stage 1 – Energy Deposition

- (heavy) charged particles: Mean energy loss described by Bethe Bloch formula
- Strong fluctuations of energy loss: Landau-Vavilov distribution / Bichsel model
	- Varying number interactions
	- Varying energy transfer
	- Secondary particles (e.g. delta rays)
	- Most probable value < Mean

• Photons: Photo effect, Compton effect, pair production

Stage 2 – Signal Formation

- Si sensor operated as diode in reverse bias \rightarrow depleted volume
- Signal formed by motion of e/h pairs in electric field
- Contribution to motion:
	- Diffusion Temperature-driven random motion, mean free path ~ 0.1 µm, mean 0
	- Drift Directed motion, depending on electric field and charge carrier mobility, different parametrizations for mobility available, depending on temperature, silicon, ...
- Motion stops, when...
	- Charge carriers reach readout electrode (conductor)
	- Charge carriers recombine/get trapped (depends on purity, doping, lattice defects, ...)
- When carriers reach electrodes, total induced charge is equivalent to collected charge

Stage 3 – Signal Transfer

- Coupling between sensor & front-end can be
	- DC: bump bonds (hybrid pixel), direct (monolithic pixel)
	- $\,$ AC: glue layers (hybrid pixel), SiO $_2$ (strip detectors)

Stage 4 – Digitization

- Signal is amplified, shaped, zero-suppression (discriminator)
- Digitization of the signal via
	- **Full ADC**
	- Time-over -threshold
	- Threshold crossing (binary hit information)
- Buffering, encoding, data transmission...

strip

Development Cycle

From Physics Requirements to the Final Detector

 $ap²$

TCAD Sensor Simulations

- Technology Computer Aided Design
	- Simulate electrical properties of semiconductor by numerically solving field equations on mesh
- Requires knowledge of the production process (doping concentrations, implants)
- Provide detailed information on
	- Field configuration of the device
	- Derived parameters: depletion voltage, break down voltage
- Also allows to perform time-resolved transient simulations: current pulses
	- Very time consuming, especially in 3D
	- Periodic boundary conditions might allow to reduce complexity

Front-End Circuit Simulation

- SPICE Simulation Program with Integrated Circuit Emphasis
	- Simulate response of circuit to external stimuli
	- Many commercial derivatives, usually come with EDA software
- Based on IC design, either schematics or on netlist level
- Provides detailed information on
	- Response of front-end amplifier
	- **Digitization process**
- Works on individual input pulses
	- Time-consuming
	- Not really feasible to repeat for large number of input pulses

Monte Carlo Simulations

Access to Performance Parameters

ap

Monte Carlo Simulations

- Simulate full chain: energy deposition \rightarrow readout
- Include stochastic effects, fluctuations, secondaries
- Requires simplifications:
	- No self-interaction, static electric field, ...
	- **Empirical models for different stages**
- Allows to derive performance parameters
	- Position resolution, timing, efficiency
	- Combine with results from device simulations to increase accuracy
- Monte Carlo Simulation Codes: AllPix, PixelAV, KdetSim, (unpublished private codes), …, Allpix Squared

The Allpix² Framework

- Flexible MC simulation software, that
	- ...allows to **test different** simulation **models** for signal formation
	- ...implements parametrized detector models
	- ...facilitates usage of precise electric fields
- Focus on usability
	- Separate infrastructure from physics
	- **Easy setup & configuration**
	- Provide documentation (150p. [user manual](https://project-allpix-squared.web.cern.ch/project-allpix-squared/usermanual/allpix-manual.pdf))
- Developed within CLICdp collaboration

Configuration of the Simulation Chain

- Building simulation chain from individual modules
	- Configuration file with modules in order of execution
	- Support for physical units
- Every parameter documented in manual
- Geometry configuration
	- File with position/orientation of individual detectors
	- Model files define detector geometries
	- Different detector models pre-configured

The Simulation Chain

 $ap²$

The Simulation Chain

ap

- Building blocks follow individual steps of signal formation in detector
- Algorithms for each step can be chosen independently

The Simulation Chain

ap⁻

- Simulation very flexible: modules configurable on per-detector level
- Multiple instances can be run in parallel (e.g. to simulate different front-ends)

The Monte Carlo Truth

- Unlike in nature, in simulations we know everything
- Allpix² keeps history for all simulated objects available for detailed analysis

Energy Deposition

- Using established software for simulating particle interaction: Geant4
	- Tracking of particles through entire setup, including magn. fields
	- Production and tracking of secondary particles
	- Provides MC truth information on all particles
	- Allows visualization of setup

- Very simple model: Depositing charge at single point or along line
- Custom code using energy loss spectra and lookup tables delta ray ranges
- Custom code for simulation of laser measurements

e

γ

Charge Transport

- Most crucial (and time consuming) component in simulation chain
- Various models with different complexity:
	- \bullet O(1) Projecting Charge Carriers
	- O(N) Integration of Equations of Motion
	- O(2xNxM) Induced Signal at Electrodes
- Multiple charge carriers from same energy deposit propagated together
	- Depending on initial statistics and required accuracy
	- Some models allow to ignore electrons or holes
- Computing time given per group of charge carriers

O(1) – Projecting Charge Carriers

- With linear electric field, calculate approximate total drift time via analytical approximation of mobility integral
- For each (group of) charge carrier,
	- Calculate total drift time
	- Calculate total diffusion offset for this time
	- Put charge carrier on sensor surface, with offset drawn from Gaussian distribution of width σ_{x}
- Very fast simulation, few calculations
- Only works for linear electric field approximations (reasonable for many thick planar sensors) and without magnetic field

 $t=\int\frac{1}{v}$

v

ds≈

1 $\frac{1}{\mu_0}$ $\ln\left(E\left(s\right)\right)$

+ *s*

Ec]

k

 $E(s) = ks + E_0$

O(N) – Integration of Equations of Motion

- Successive integration of charge carrier motion
- Take each (group of) charge carrier
	- Calculate mobility μ from local electric (and magnetic) field (using Jacoboni/Canali parametrization)
	- Calculate velocity
	- Make step, add diffusion offset from Gaussian distribution
	- Repeat N times until sensor surface is reached
- Using 5th order Runge-Kutta-Fehlberg method
	- Adaptive step size according to position uncertainty
	- Method allows description of drift in complex field configurations

$$
\mu = \frac{v_m}{E_c} \frac{1}{(1 + (E/E_c)^{\beta})^{1/\beta}}
$$

$$
\sigma_x = \sqrt{\frac{2k_bT}{e}} \mu t
$$

e -

e -

Drift Path Visualizations

Recording individual steps of the RKF integration to produce visualizations

O(2xNxM) – Induced Signal at Electrodes

- Successive integration of motion, calculating induced charge per step
- Take each (group of) charge carrier
	- Calculate mobility & velocity from local fields
	- Make step, add diffusion offset from Gaussian distribution
	- Get induced charge from weighting potential difference for M neighbors
	- Repeat N times until sensor surface is reached
- Allows time-resolved simulation

$$
Q_n^{ind.} = \int_{t_{n-1}}^{t_n} I_n^{ind.} dt = q [\phi(x_n) - \phi(x_{n-1})]
$$

- Requires weighting potential, might not be trivial to obtain
- Time consuming:
	- Calculation for all neighboring electrodes for every step
	- Requires propagating both electrons and holes (x2)

e -

h

Current Pulses at Electrodes

- Example of transient simulation Disclaimer: work in progress
- Detector with
	- 300 µm x 300 µm pitch, 200 µm x 200 µm electrodes, 100 µm sensor thickness
	- MIP-equiv. Particle, 80 e/h-pairs / µm
- Struck pixel sees total charge
- Neighbor pixels see tiny pulses, net charge is zero

Including Additional Effects

- Depending on simulation scenario, additional effects might be required
	- Slow sensors might expose effects from recombination
	- Irradiated sensors see strong effect from trapping
- Some can be added ad-hoc to propagation models:
	- Trapping of carriers (stop propagation for certain time)
	- Recombination (stop propagation completely)
	- Multiplication (create new charge carriers at strong electric fields)

• Other effects (shielding effects in electric field, charge carrier self-interaction) are more difficult to include, complexity might go beyond MC simulations

Digitization

- Methods depend on available information from charge transport:
- Simple front-end
	- Compare total charge against configured threshold
	- Add input noise, threshold dispersion, convert to ADC units
- Front-end with timing capabilities
	- Requires current pulse
	- Threshold crossings for time-of-arrival and time-over-threshold
- Full front-end simulation
	- Requires current pulse shape
	- Lookup tables for front-end response function, produced from device simulations

Examples Planar, ELAD and CMOS Sensors

Simulation of Detector System

- Simulation of a beam telescope setup: CLICdp Timepix3 telescope @ SPS H6
	- Telescope: 6x Timepix3 w/ 300 μ m sensors
	- DUT: 1x Timepix3 w/ 50 µm sensor
- Validation of reconstruction
- Different algorithms used:
	- Telescope: projection DUT: successive integration
- Linear electric field approximation

NIMA 901 (2018) 164 – 172 [doi:10.1016/j.nima.2018.06.020](https://doi.org/10.1016/j.nima.2018.06.020)

Simulation of Detector System

- Using same reconstruction algorithms as for data: clustering, η correction, tracking
- Very good agreement between data and simulation observed (total charge: Geant4; cluster size: both; residual shape: Allpix²)

ap

Enhanced Lateral Drift Sensors

- Resolution in thin sensors limited to pitch / $\sqrt{12}$
- Enhance charge sharing via electric field
	- Deep implants create lateral field
	- Spread of charges during drift, cluster size \sim 2
- Theoretical optimum: linear sharing

No prototype yet: use simulation to optimize sensor

ap

Enhanced Lateral Drift Sensors

- MC Simulation with Timepix3 pitch: 55 μ m
- Strip-like ELAD implants, expecting
	- X: Unaffected charge sharing along strip implants
	- Y: Stronger charge sharing across strip implants
- Using TCAD electric field & successive integration model

37 S. Spannagel - CERN Detector Seminar - Monte Carlo Simulations for Silicon Detectors 08/04/2019

55 µm

 \overline{V}

• ALICE Investigator chip, pixels with 28x28um pitch

- Field in top 25um (high-resistivity) silicon
- Undepleted in 75um silicon substrate
- Measurements published: NIMA 927 (2019) 187-193 [doi:10.1016/j.nima.2019.02.049](https://doi.org/10.1016/j.nima.2019.02.049)
- Simulation compared to data from SPS, 120 GeV $π$
	- Simulating only detector under investigation
	- Using Monte Carlo truth information as reference
	- Smeared with telescope resolution obtained from data
- Electrostatic field obtained from TCAD simulations

Monolithic CMOS in High-Resistivity Silicon

- High statistics of 3D Monte Carlo simulation:
	- Sampling of quantities within pixel cells
	- Here: cluster size in x
- Fully depleted planar sensors: expecting bands without y-dependence
- Cluster size exhibits correlation between x/y
	- Reason is field configuration & signal contributions from diffusion
	- Simulation with TCAD electric field reproduces correlation and the correlation

Monolithic CMOS in High-Resistivity Silicon

- Data and simulation match well, e.g. for cluster size & resolution vs. threshold
- Simulation with linear electric field does not describe data

In a nutshell...

41 S. Spannagel - CERN Detector Seminar - Monte Carlo Simulations for Silicon Detectors 08/04/2019

A Word on Writing Code for MC Simulations

- Implementation of algorithms is not the most time-consuming part
- Most time-consuming part is to do it such, that the algorithms are...

...validated with prototype data & device simulations

...well documented

...maintainable over a longer period than O(1 fellow) / O(1 PhD)

- Development of Allpix²: spend considerable time on
	-
	- Implementing automated testing, compilation \rightarrow ensure software always works
	-
	- Writing documentation → lower barrier for new users
		-
	- Code review for new features \rightarrow ensure functionality/compatibility

Allpix² Users, Contributors

• First [user workshop](https://indico.cern.ch/event/738283/) held 26-27 November 2018 @ CERN Tutorials, discussions, feedback

● Increasing number of community contributions to the code base

AGH University Krakau ONERA Aerospace Lab, Toulouse IHEP Beijing Freiburg University Czech Techn. University, Prague Université de Genève ATLAS @ DESY CMS Lorentz Angle @ DESY ELAD @ DESY ETH Zurich NIKHEF, Amsterdam University of Glasgow ATLAS Monolithic @ CERN ATLAS SCT @ KEK Utrecht University University of California, Berkeley

University of Liverpool University of Liverpool Georg-August-Universität Göttingen Université de Montréal Charles University, Prague CLICdp @ CERN CMS Pixel @ CERN ATLAS Strips @ CERN LHCb VeloPix @ CERN Rutherford Lab, STFC Dortmund University University of Glasgow University of Birmingham

Disclaimer: these are just some user groups we have been in contact with...

43 S. Spannagel - CERN Detector Seminar - Monte Carlo Simulations for Silicon Detectors 08/04/2019

Summary

- Designing a new silicon detector is a major undertaking
- Simulations are a vital component of the prototyping effort
	- Device simulations help in understanding and optimizing the design
	- Monte Carlo Simulations are required to assess the device performance
- Models with different complexity are available fast & coarse \leftrightarrow slow & precise
- Including results from device simulations improves detector modeling
- Allpix Squared: flexible platform for implementation of different algorithms
- Extensions planned, participation from community very welcome

Allpix Squared Resources

Website <https://cern.ch/allpix-squared>

Repository [https://gitlab.cern.ch/allpix-squared/allpix-squared](https://gitlab.cern.ch/allpix-squaredsimonspa/allpix-squared)

Docker Images

https://gitlab.cern.ch/allpix-squared/allpix-squared/container_registry

User Forum:

<https://cern.ch/allpix-squared-forum/>

Mailing Lists:

allpix-squared-users <https://e-groups.cern.ch/e-groups/Egroup.do?egroupId=10262858>

allpix-squared-developers <https://e-groups.cern.ch/e-groups/Egroup.do?egroupId=10273730>

User Manual:

<https://cern.ch/allpix-squared/usermanual/allpix-manual.pdf>

