

Continuous Integration for
PLC-Based Control Systems
Brad Schofield, João Borrego

CERN BE-ICS

05 October 2019

What is Continuous Integration?
● Software development methodology, focusing

on:
– Frequent commits to a repository

– Automation of build process

– Automated testing to detect regressions, and check
functionality

Motivation: Why CI for PLCs?
● At CERN, we have a widely used framework for

industrial control systems: UNICOS
● Use of CI in developing this framework helps

detect problems earlier
● We also want to be able to test applications,

both new developments and refactoring of
existing ones

Challenges
● How to automate the build process?

– Must use proprietary engineering tools, different for
each PLC supplier (Step 7, TIA Portal, Unity etc)

● How to implement tests?
– Usually don’t want to change the program to

implement tests ‘natively’

– Want to be able to write tests in an easy way

Approach: Testing
● Write tests in Python

– Common to all PLC types

– Can take advantage of nice testing packages like
unittest, pytest

– We can easily make abstractions (ie operate on
process objects rather than bits in a DB)

● Sounds nice, but how to talk to the PLC?

● Write tests in Python
– Common to all PLC types

– Can take advantage of nice testing packages like
unittest, pytest

– We can easily make abstractions (ie operate on
process objects rather than bits in a DB)

● Sounds nice, but how to talk to the PLC?

Approach: Communication
● We use OPC UA

– Open process control communication protocol

– Gives access to PLC variables without altering
program

– Supported by many PLC types

– Simple to interface in Python (python-opcua package)

OPC-UA Testing Architecture
– Siemens S7-300/400

uses Simatic NET OPC
UA server on VM

– Siemens S7-1500 can
use onboard server or
Simatic NET

– Test suite can run
anywhere with Python

8

S7-300/400
PLC

S7-1500
PLC

OPC-UAServer plctest

TestSuite

OPC-UA

OPC-UAServer

Ethernet

plctest

TestSuite

OPC-UA

Test PLC Pool

Virtual Machine Pool

What about the build stage?
● We need to automate tasks usually done in the

engineering tools (Step 7, TIA Portal)
– Import sources

– Compile

– Download HW & SW to test target PLCs

● Need to create command line tools based on
APIs!

Command line engineering tools
● Together with other colleagues at CERN, we

have developed tools based on the C# APIs for
Step 7 and TIA Portal
– Can now import, compile and download to a PLC

– Allows easy scripting of an automated pipeline

● Gitlab CI growing in use rapidly at CERN, we
choose to start there

CI Pipeline (UNICOS)

11

– GitLab CI pipeline from specification file to test results

– Automatic UNICOS project build with Maven and UAB, deployment
with STEP 7 and TIA Portal C# APIs, testing via Python and OPC-UA

Python testing package: py-plc-test
● Wraps OPC UA comms, and

knowledge of internal structure

● Provides an abstraction layer to
interact with UNICOS objects
on higher level

● Can even write one set of tests
and instantiate them for
different PLC types!

UNICOS Object Abstraction

13

– OPC-UA provides similar, but not identical interface for different
PLC types. UNICOS abstraction means we don’t need to worry
about this

– Single test description for multiple PLC types

High-level Internal Implementation
on_off.set_mode(“manual”) on_off.set_attribute(“AuIhMMo”, False)

on_off.reset_register(“ManReg01”)

on_off.set_attribute(“ManReg01.MMoR”, False)

Example: functional test of a UNICOS
process object

14

Demo!

● Let’s look at the pipeline in more detail

Thanks for your attention!

	Slide 1
	Simulation and Testing with PLCSIM Advanced
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

