


Continuous Integration for
PLC-Based Control Systems

Brad Schofield, Joao Borrego
CERN BE-ICS
05 October 2019



What is Continuous Integration?

e Software development methodology, focusing
on.
- Frequent commits to a repository
— Automation of build process

- Automated testing to detect regressions, and check
functionality




Motivation: Why CI for PLCs?

* At CERN, we have a widely used framework for
industrial control systems: UNICOS

* Use of Cl in developing this framework helps
detect problems earlier

* We also want to be able to test applications,
both new developments and refactoring of
existing ones

CE/RW
\

N,



Challenges

 How to automate the build process?

- Must use proprietary engineering tools, different for
each PLC supplier (Step 7, TIA Portal, Unity etc)

* How to implement tests?

- Usually don’t want to change the program to
implement tests ‘natively’

- Want to be able to write tests in an easy way




Approach: Testing

» Write tests in Python P pgth()ﬂ

- Common to all PLC types

M

- Can take advantage of nice testing packages like
unittest, pytest

— We can easily make abstractions (ie operate on
process objects rather than bits in a DB)

e Sounds nice, but how to talk to the PLC?

&)

N,



Approach: Communication
* We use OPC UA

— Open process control communication protocol

- Gives access to PLC variables without altering
program

- Supported by many PLC types

- Simple to interface in Python (python-opcua package)




OPC-UA Testing Architecture

— Siemens S7-300/400 Test PLC Pool
uses Simatic NET OPC

UA server on VM S7-§(£0é400

S7-1500
PLC

]
==
==
=
=)
==
==
o]
==
==
=
=1
—
1
| -
=

- Siemens S7-1500 can S OPC-UAServer
use onboard serveror . A1
Simatic NET OPC-UA ;

OPC-UAServer [€«—» plctest E #_\ plctest /ﬁi\}

B TeSt SUIte Ca_n run TestSuite TestSuite |
anyWhere with Python Virtual Machine Pool

L— ]
= = openstack.



What about the build stage?

* We need to automate tasks usually done in the
engineering tools (Step 7, TIA Portal)

- Import sources
- Compile
— Download HW & SW to test target PLCs

* Need to create command line tools based on
AP|s!

CE/RW
\

N,



Command line engineering tools

* Together with other colleagues at CERN, we
have developed tools based on the C# APls for
Step 7 and TIA Portal

— Can now import, compile and download to a PLC
— Allows easy scripting of an automated pipeline

» Gitlab Cl growing in use rapidly at CERN, we
choose to start there

CE/RW
\

N,



Cl Pipeline (UNICOS)

< Build UAB > (@ Build PLC > <@ Deploy + Test>
Trigger generators: Build PLC project Deploy PLC Project
— Logic Setup test environment

— Instance Run tests

~ WinCC OA (SCADA)

4

— GitLab CI pipeline from specification file to test results

— Automatic UNICQOS project build with Maven and UAB, deployment
with STEP 7 and TIA Portal C# APls, testing via Python and OPC-UA

&)

N,



Python testing package: py-plc-test

 Wraps OPC UA comms, and

ESuE A S knowledge of internal structure
Test .
i * Provides an abstraction layer to

| ' interact with UNICOS objects

TGSZTIA T&fy on higher level
ConcreteTest « (Can even write one set of tests
I—% ZF—‘ and instantiate them for
ConcreteTestTIA ConcreteTestS7 different PLC types!

Concrete Test Case Classes

&)

N,



UNICOS Object Abstraction

— OPC-UA provides similar, but not identical interface for different
PLC types. UNICOS abstraction means we don’t need to worry
about this

— Single test description for multiple PLC types

High-level Internal Implementation
on off.set mode (“manual”) on off.set attribute(“AuIhMMo”, False)

on off.reset register (“ManReg01”)

on off.set attribute (“ManReg0l.MMoR”, False)




Example: functional test of a UNICOS
process object

def test orders 1ldo fs off(self):

on off = self.on off
on_off.configure(fs pos on=False, hf on=True, hf off=True, pulse=False, hld=True,
hld cmd=False, anim=True, out off=False, en rstart=True, rstart fs=False)

on off.set attributes({"AuOnR": True, "AuOffR": False})
self.assertEqual(True, on off.get attribute("OutOnOV"))

self.set mode assert(on off, "manual")
self.assertEqual(True, on off.get attribute("OutOnOV"))
on off.set status(False)

self.assertEqual(False, on off.get attribute("OutOnOV"))
on off.set status(True)

self.assertEqual(True, on off.get attribute("OutOnOV"))
on off.set status(False)

self.assertEqual(False, on off.get attribute("OutOnOV"))




Demo!

* Let's look at the pipeline in more detalil




Thanks for your attention!




	Slide 1
	Simulation and Testing with PLCSIM Advanced
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

