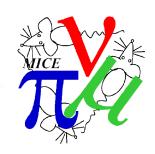
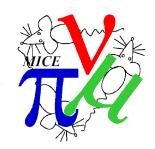

Analysis Status

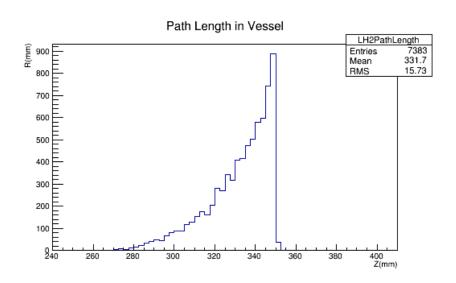
C. Rogers, ISIS Intense Beams Group Rutherford Appleton Laboratory

Reminder - Publication plan

Title	Contact	Target date		Comments
		Preliminary	Final	Jan-19
Phase-space density/emittance evolution; rapid communication	C. Rogers	Apr18 w/s	Apr19	4th referees meeting before around CM53 (21, 22Feb19, RAL)
Measurement of multiple Coulomb scattering of muons in lithium hydride	J. Nugent	Jun18; CM51	Apr19	Unfolding issues; perhaps resolved; CM53, 21,22Feb19, RAL
Performance of the MIŒ diagnostic systems	P. Franchini	Feb19; CM53		Almost complete draft
Phase-space density/emittance evolution review paper	C. Hunt	TBD		Analysis now advancing
·				_
Phase-space density/KDE/6D-emittance evolution	C Brown	TBD		Thesis published on initial analysis; taken over by CBrown
Measurement of multiple Coulomb scattering of muons in LH2	J. Nugent	TBD		Awaits completion of LiH paper
Field-on measurement of multiple Coulomb scattering	A. Young	TBD		Analysis underway
First particle-by-particle measurement of emittance in the Muon Ionization	V Dladmana		Lun 10 CME1	Accepted by FILIDby a L.C. associating values
Cooling Experiment	V. Blackmore		Jun18, CM51	Accepted by EU Phys. J C; awaiting referees
				RAL-P-2018-007; 1812.02674;
The MICE Analysis and User Software framework	D. Rajaram	May18 w/s	Jun18, CM51	

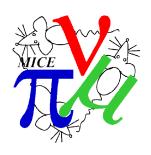

- Status as of CM53
- Few words about each analysis
- More details on the "First observation of cooling" paper




LiH scattering (Nugent)

- Referee's meeting following CM53
- Considering using TOF12 for momentum reconstruction; efficiency issues look too hard to resolve
- Space angle deconvolution looks tricky
 - Does it add to the paper?
- Comments by John N later

IH2 scattering (Gavriil)

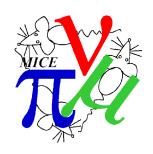


- Detailed analysis on path length estimation looks nice
 - Few % "bias" for some tracks
 - Need to understand how this can be treated in the analysis
- Identified possible issue in alignment of detectors
 - Can this be resolved in detail did we screw up the alignment procedure?
- Need to tackle Particle Identification
 - This will be "new physics" at high momentum cannot use tracker vs TOF

Field-on scattering

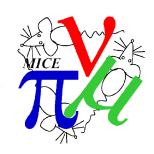
- Should allow larger angles to be measured
- Moving to a full analysis

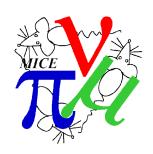
System performance


- Too many plots to summarise!
 - 50 pages?
 - Will need some hard-nosed editing
- Getting ready to move to another version

- Good analysis
- Demonstrate good agreement between data, theory and MC
- But missing details of the analysis
- Missing some MC

Optics


- Optical aberrations study is proving interesting
 - Should be valuable to the community
 - But need to understand what conclusions can be drawn
- Still do not have basic optical alignment in place

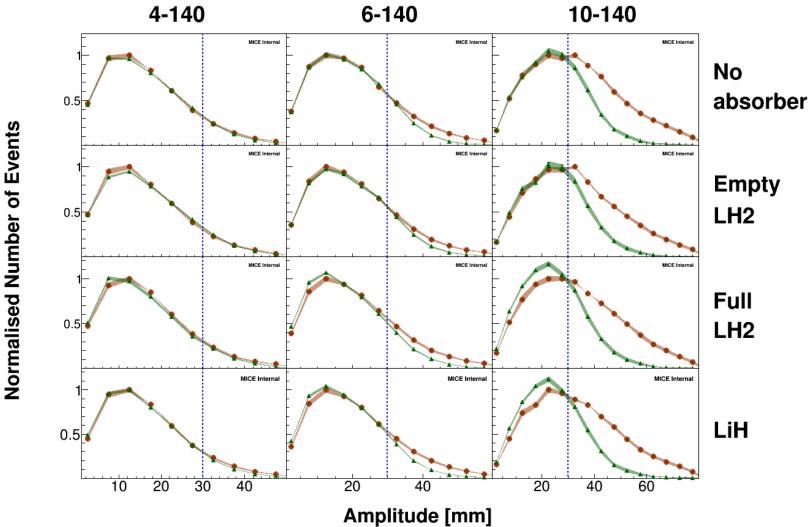


Detailed emittance evolution

- Scope of the paper is huge
- Still working through MC and data basics
- Some discussion about splitting the paper into smaller chunks?

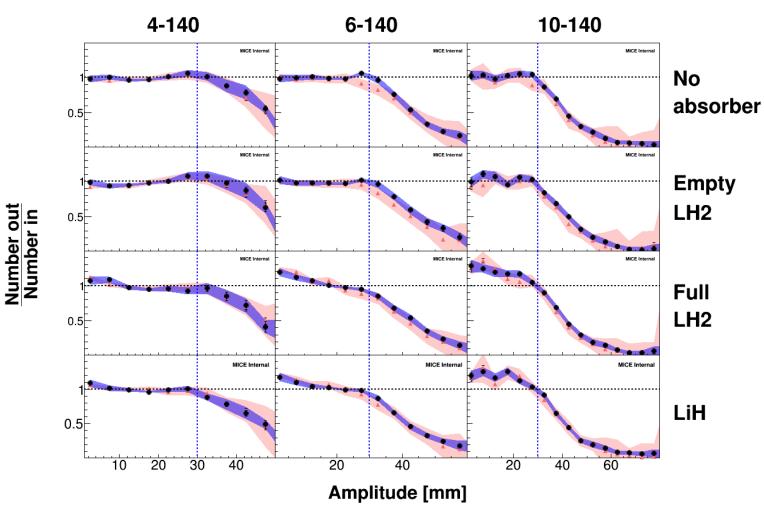
Wedge analysis

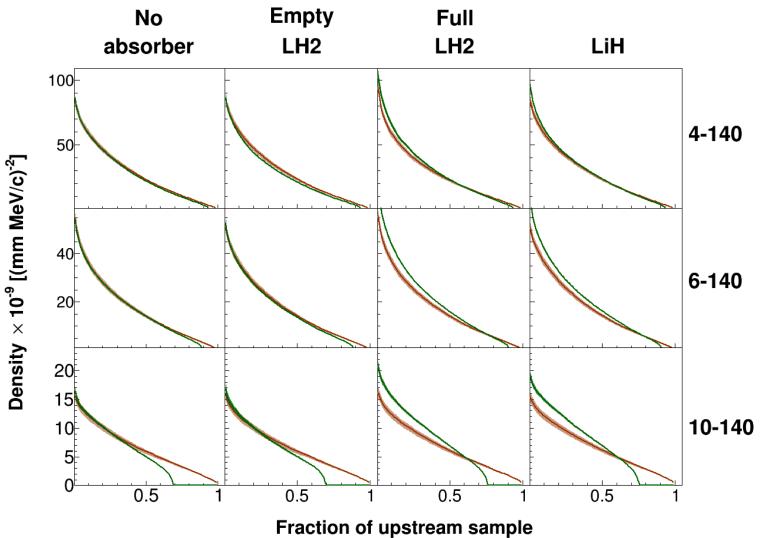
- Getting to grips with the analysis
 - Beam weighting/sampling
 - Phase space density or equivalent analysis
- Need to crystallise this into a full analysis loop
 - Sample selection
 - Detector resolution and efficiency
 - Systematic and Statistical uncertainties
 - Result

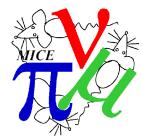

First observation paper

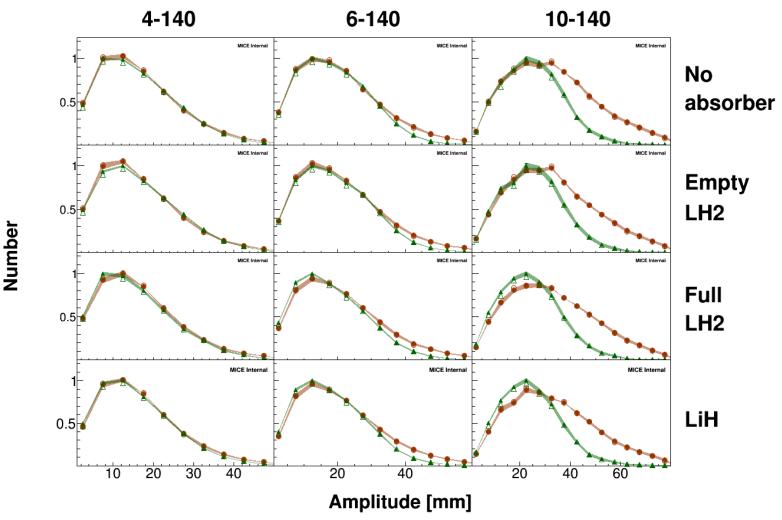
MICE


- Updates since CM53
 - Slight change to amplitude calculation
 - Modified systematic uncertainty
 - Add a plot showing uncorrected amplitudes
- First reading of paper by MICE referees
 - Consider replacing amplitude "CDF ratio" plot with "density ratio" plot
 - Various discussion on words and emphasis
- Work in progress
 - Move to production reco

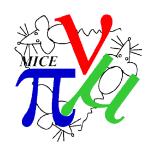

Updated pdf

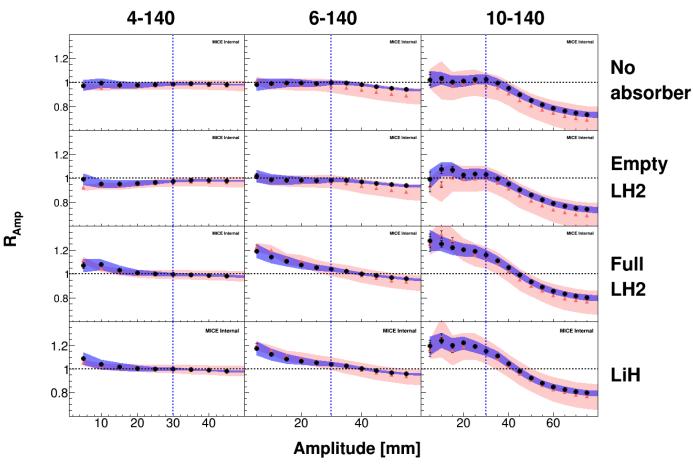

Updated pdf ratio


Updated density profile



Uncorrected vs corrected amplitude pdf

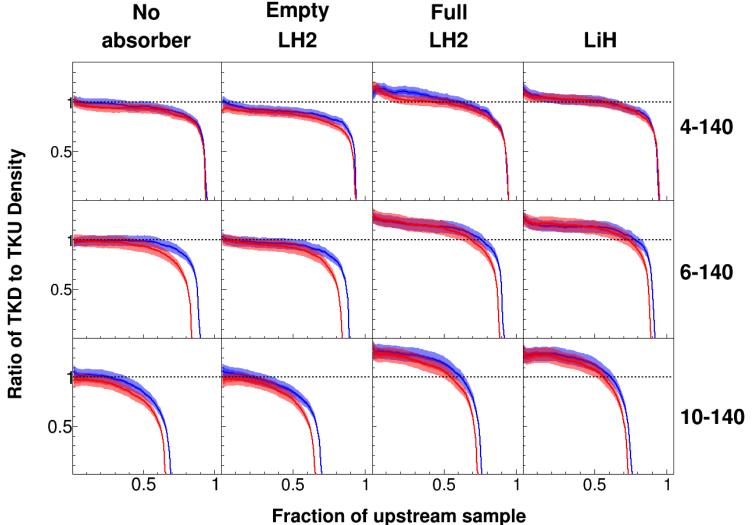



Discuss - "6th figure"

MICE

- We are allowed 6 figures
 - Schematic
 - Phase space distributions
 - 3 Amplitude PDF
 - 4 Ratio of amplitude PDFs
 - 5 Ratio of amplitude CDFs
 - 6 Phase space density vs fraction of beam
- Propose
 - Schematic
 - Phase space distributions
 - 3 Amplitude PDF
 - 4 Ratio of amplitude PDFs
 - Phase space density vs fraction of beam
 - Ratio of phase space densities

CDF Ratios



- Ratio of amplitude CDFs
 - Consider Cumulative Density Function the number of particles enclosed by a given amplitude ellipse
 - Take ratio of downstream to upstream CDF

Density Ratios

Error on transmission is underestimated

First observation of cooling paper

February 20, 2019

Muon Ionization Cooling Experiment

Version 0.0

First demonstration of ionization cooling using the Muon Ionization Cooling Experiment

MICE collaboration

Sion new phenomena in lepton-Muon beams of high brightness have the potential to carry the antilepton collisions to extremely high energy. Such bear well-characterised neutrino beams. The muon beam " તાrough the decay of pions produced in the interaction of a proton beam with a targe the phase-space volume occupied by the aced (cooled). Ionization cooling is the novel technique by which it is proposed The Muon Ionization Cooling Experiment (MICE) collaboration constructed a azation cooling cell and used it to provide the first observation the pioneering measurements made by the MICE collaboration. These results have sig amplications for the future development of high-brightness muon beams for particle physics.

- First reading of paper by referees
- Decision/revision of which plots should be included
- Discussion of wording and level of emphasis
- Aim for revised draft early May