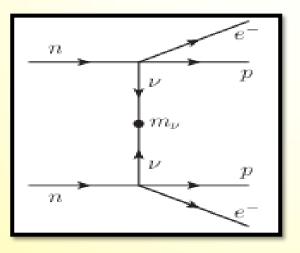

Minimal Realizations of Dirac Neutrino Mass from Generic One-loop and Two-loop Topologies

VISHNU PADMANABHAN KOVILAKAM OKLAHOMA STATE UNIVERSITY

Based on: arxiv: 1904.07407 (accepted for publication in EPJC), arxiv: 1910.xxxx

(In Collaboration with Sudip Jana and Shaikh Saad)

Particle Physics on the Plains, University of Kansas 13th Oct, 2019


Neutrino Mass and Nature of Neutrinos

- Neutrino Oscillation data suggests that neutrinos have tiny masses
 - \rightarrow Physics Beyond SM.

3

Origin of neutrino mass is still unknown

Neutrinos can be either Dirac type or Majorana type in nature.
Can be resolved by neutrinoless double beta decay.

No Conclusive Evidence

Neutrino Mass Models

- Most of the popular models assumes that the <u>neutrinos are Majorana type</u> in nature.
 - Seesaw : Type I, Type II, Type III, etc...
 - Radiative Mechanism : 1-loop (Zee), 2-loop (Zee-Babu)
- Building Dirac neutrino mass models require RH neutrinos, ν_R singlets under the SM

- Using additional symmetries one can <u>forbid the tree-level mass term</u> as well as <u>Majorana neutrino mass terms at all order</u>
 - Discrete Symmetries: D. Borah et al.
 - In Left-Right Symmetry Model: Babu-He, Branco-Senjanovic
 - SM with U(1) symmetry (global/local): U(1)_{B-L}(Ma), U(1)_R(S.Jana, VPK, S.Saad (arXiv:1904.07407))

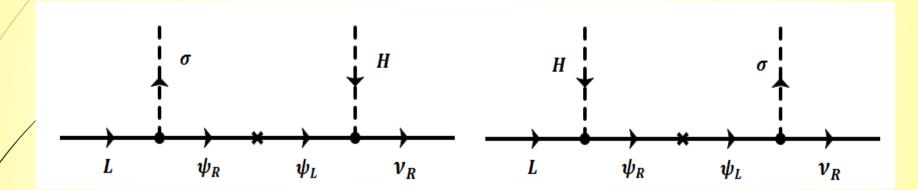
\therefore Dirac Neutrino Mass: **SM x** $U(1)_{B-L}$

SM \times $U(1)_{B-L}$ is anomaly free with three RH neutrinos.

5

Anomaly free B-L charge assignment of RH neutrinos:

$$v_{Ri} = \{-1, -1, -1\} \text{ or } \{5, -4, -4\}$$


- The second possibility will naturally forbid tree-level neutrino mass term as well as Majorana mass term at all order.
- Neutrino mass generated by d = 5 effective operator of the form

$$\mathcal{L}_5 = -\frac{h_{ij}}{\Lambda} \,\overline{L}_i \widetilde{H} \,\nu_{Rj} \sigma + h.c.,$$

 σ : SM singlet scalar charged +3 under $U(1)_{B-L}$

\therefore Dirac Neutrino Mass: **SM x** $U(1)_{B-L}$

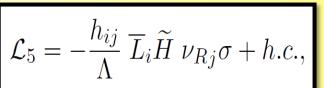
Dirac Neutrino Mass via Seesaw mechanism

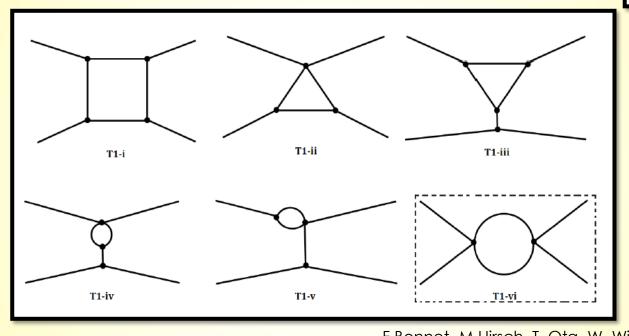
With $\psi_{L/R} = (1, 1, 0, -1)$ or (1, 2, -1/2, -4)

Interested in NP at TeV Scale

6

Radiative Models


Dirac Neutrino Mass: SM x $U(1)_{B-L}$


- Systematically search for the minimal Dirac neutrino mass models arise from this d = 5 effective operator.
- Strategy: Construct the generic one-loop and two-loop topologies and then build the associated minimal models.
- Minimality refers to
 - ✓ Models <u>with minimum number of BSM states</u> are preferable.
 - ✓ <u>SU(2)_L singlet BSM states</u> are preferred. If BSM particles are required not to be isosinglet, then we minimize the number of states that are charged under $SU(2)_L$.
 - ✓ If possible, introduction of any BSM fermion is prohibited. If the presence of BSM fermionic state is required, we assume it to be vector like under SM x $U(1)_{B-L}$.
 - ✓ BSM states with lowest dimensional representation under $SU(2)_L$ are preferred.

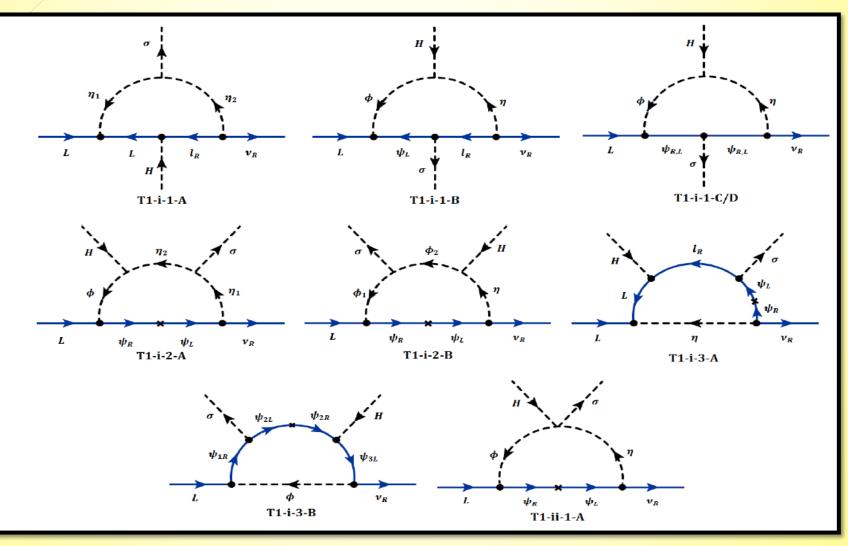
One-loop topologies: Viable topologies

All possible one-loop topologies with four external legs


8

F.Bonnet, M.Hirsch, T. Ota, W. Winter JHEP 1207 (2012)153

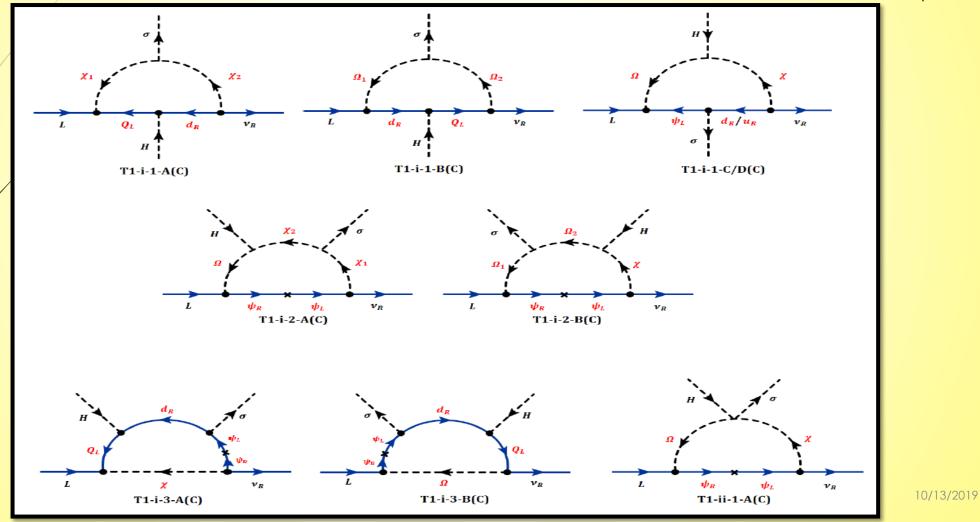
Not all these topologies can be lead to successful one-loop neutrino mass in our framework


T1 – iii can't give viable one loop models in our framework.

Minimal One-loop models

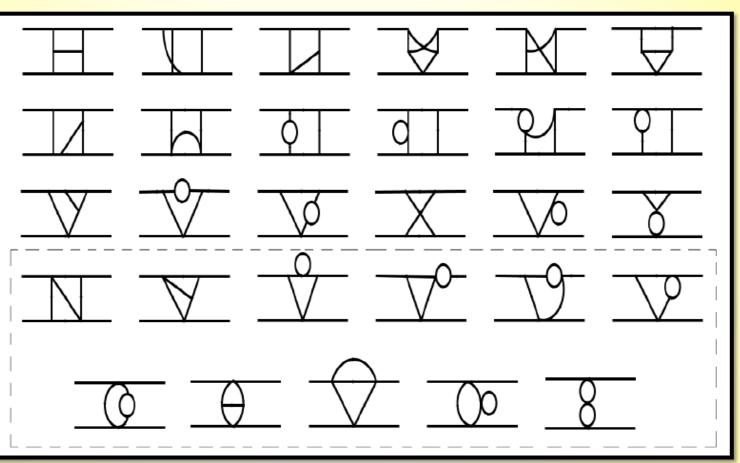
Constructing minimal models arising from T1 – i, ii

10


S.Jana, VPK, S.Saad (arXiv:1910.xxxx)

Minimal One-loop models – Colored version

Corresponding minimal models for the colored version

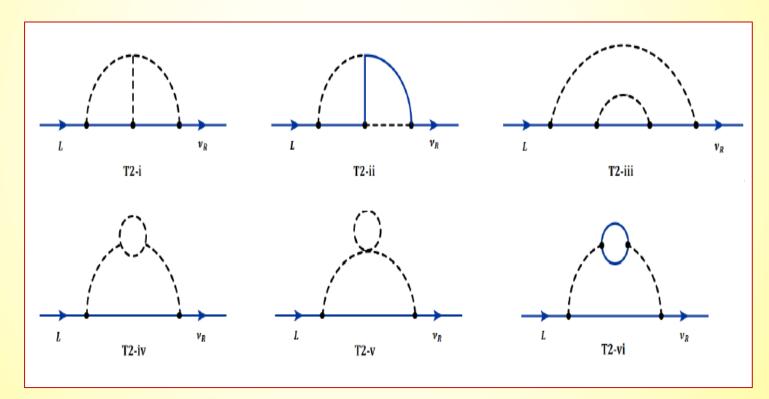

S.Jana, VPK, S.Saad (arXiv:1910.xxxx)

Two-loop topologies

12

All possible two-loop topologies with four external legs

Not all the topologies can be lead to successful two-loop neutrino mass in our framework. For example, last 11 topologies corresponds to non-renormalizable topologies 10/13/2019

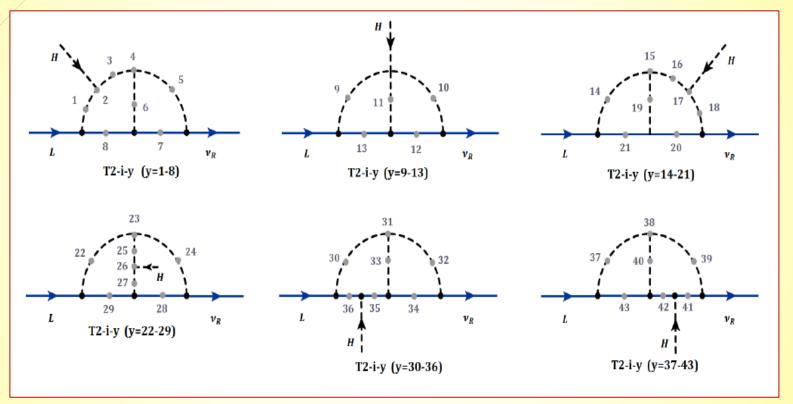

D.A.Sierra, A.Degree, L.Dorame, M.Hirsch JHEP 1503 (2015) 040

Two-loop Skeleton Diagrams

Remaining 18 topologies can give vast number of diagrams.

13

By suppressing the external scalar legs, all these diagrams can be reduced into six basic diagrams -> Skeleton diagrams

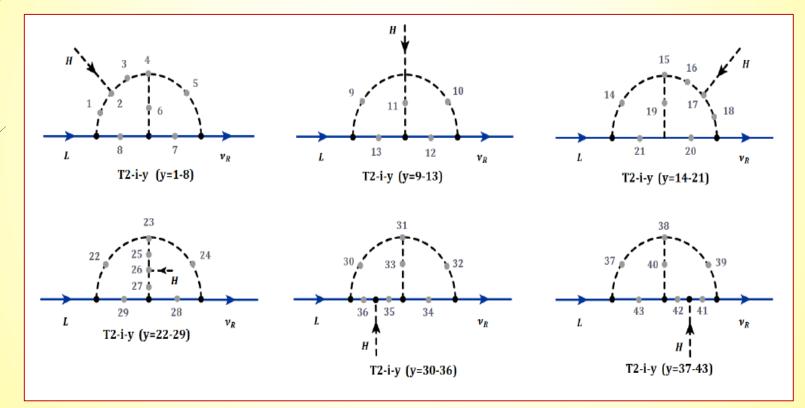

Constructing minimal models arising from each of the skeleton diagrams.

10/13/2019

D.A.Sierra, A.Degree, L.Dorame, M.Hirsch, JHEP 1503 (2015) 040

Search for Minimal Two-loop Models

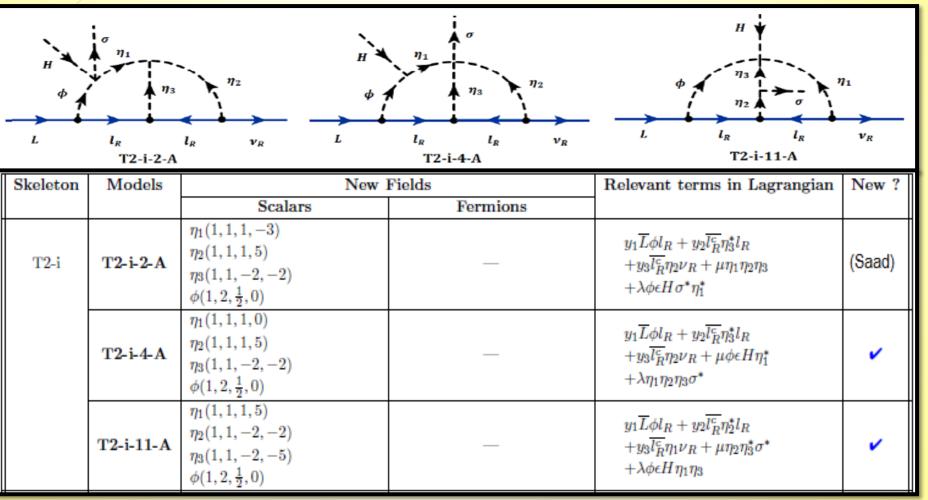
 \Box All possible diagrams emerging from T2 - i


□ Discarding 22 viable diagrams, T2 - i - y, $y = \{7 - 8, 12 - 13, 20 - 21, 28 - 29, 34 - 36, 41 - 43\}$ Required introduction of BSM fermions

Search for Minimal Two-loop Models

 \Box Fixing internal fermion lines to be l_{R} ,

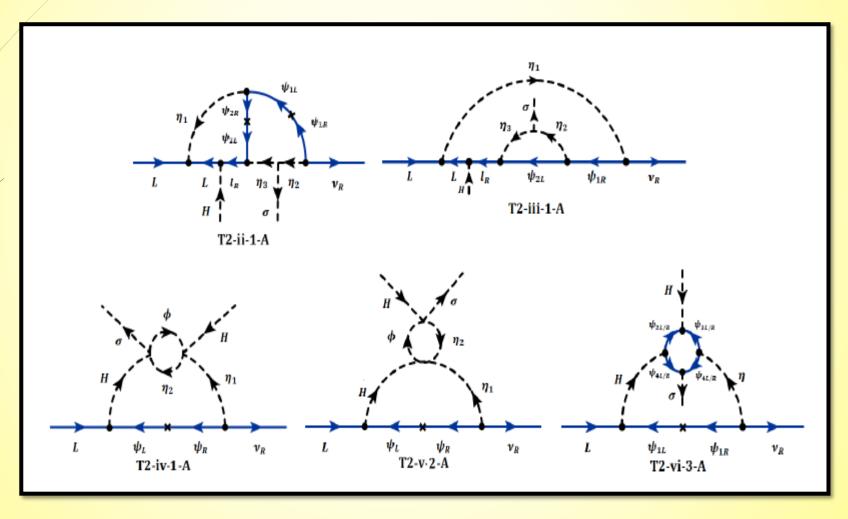
15


excluding all diagrams other than T2 - i - y, $y = \{2 - 6, 10 - 11\}$, required more than one isodoublet

Among these 7 diagrams selecting diagrams with minimal number of BSM scalars.

Minimal Two-loop Models

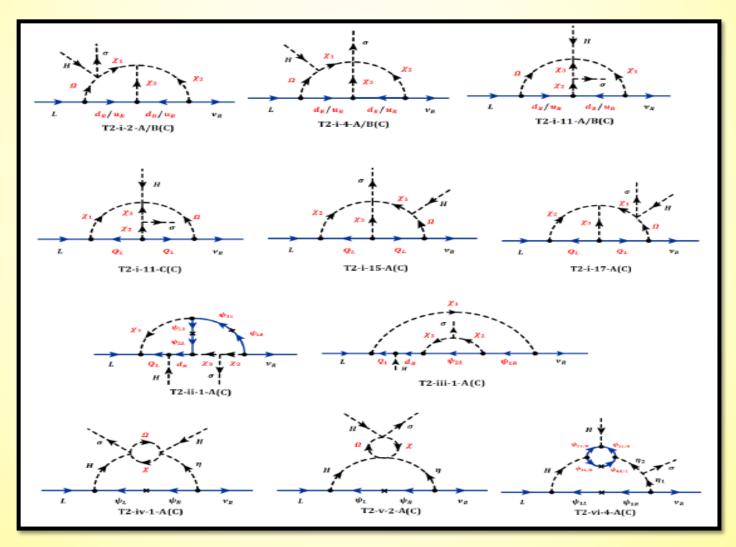
16



10/13/2019

S.Jana, VPK, S.Saad (arXiv:1910.xxxx)

Minimal Two-loop Models


 \Box Repeating similar strategy for T2 - ii to vi

Minimal Two-loop models – Colored version

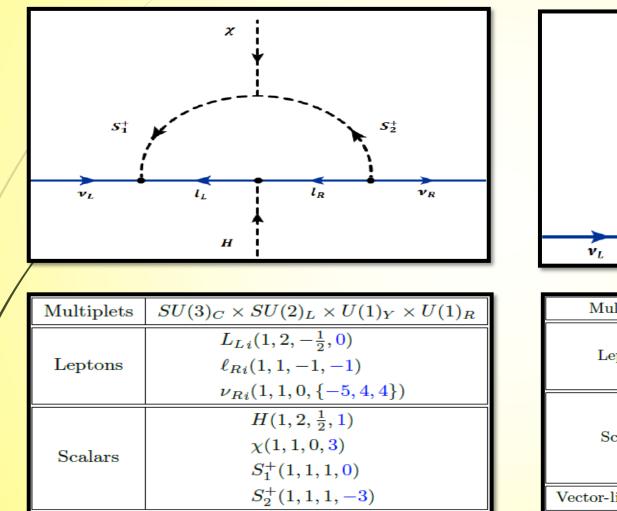
Corresponding minimal models for the colored version

18

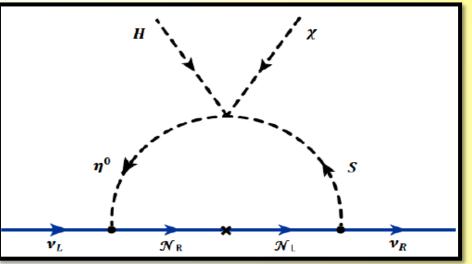
Possible DM Candidates

Spontaneously broken $U(1)_{B-L}$ symmetry, may leave a residual unbroken symmetry that can potentially stabilize the DM particle.

One-Loop Models


19

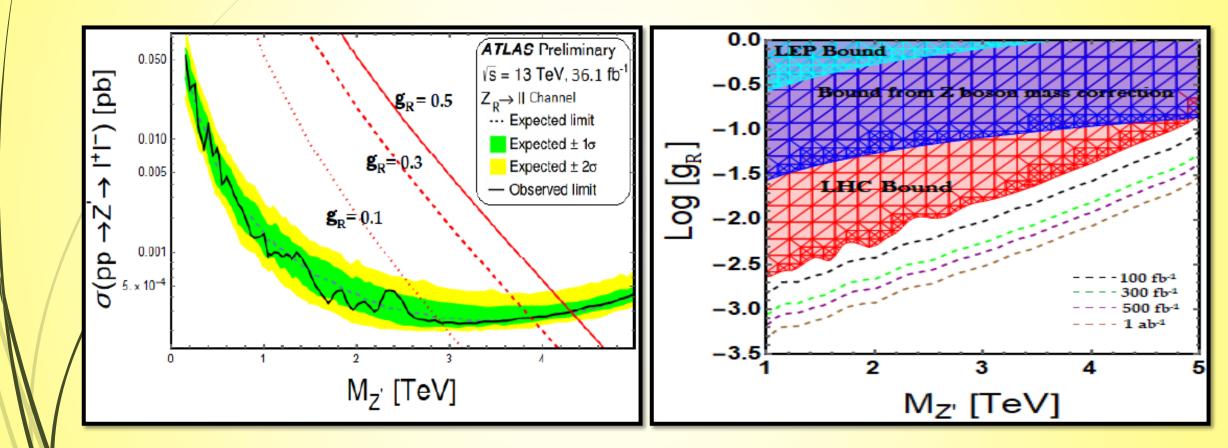
Two-Loop Models


Models	Residual lepton symmetry	Residual dark symmetry	Choice of Y	Possible DM candidate	Models	Residual lepton symmetry	Residual dark symmetry	Choice of Y	Possible DM candidate
T1-i-1-A	Z_3	X	_	X	T2-i-2-A	\mathcal{Z}_3	X		×
T1-i-1-B	Z_3	X		×	T2-i-4-A	Z_3	×		×
T1-i-1-C/D	\mathcal{Z}_6	1		$\psi_{L,R}, \eta, \phi$	T2-i-11-A	Z_3	×		×
T1-i-2-A	\mathcal{Z}_6	1	0	$\psi_{L,R}, \phi, \eta_1, \eta_2$	T2-ii-1-A	\mathcal{Z}_6	✓	0	$\psi_{2L,R}$
			-1	ϕ				-1	η_2, η_3
T1-i-2-B	\mathcal{Z}_6	1	0	$\psi_{L,R},\phi_1,\phi_2,\eta_1,\eta_2$	T2-iii-1-A	\mathcal{Z}_6	✓	0	$\psi_{2L,R}$
			-1	ϕ_1,ϕ_2				-1	η_2, η_3
T1-i-3-A	\mathcal{Z}_3	X	_	X	T2-iv-1-A	\mathcal{Z}_6	✓	1/2	ϕ,η
T1-i-3-B	\mathcal{Z}_6	1	0	$\psi_{1L,R},\psi_{2L,R},\psi_{3L,R},\phi$				-1/2	ϕ
			-1	$\psi_{3L,R},\phi$	T2-v-2-A	\mathcal{Z}_6	✓	1/2	ϕ
T1-ii-1-A	\mathcal{Z}_6	1	0	$\psi_{L,R},\eta,\phi$				-1/2	ϕ, η_2
			-1	ϕ	T2-vi-3-A	Z_6	✓		$\psi_{2L,R},\psi_{4L,R}$
					_				10/13/2019

S.Jana, VPK, S.Saad (arXiv:1910.xxxx)

Phenomenology of Specific Models

20

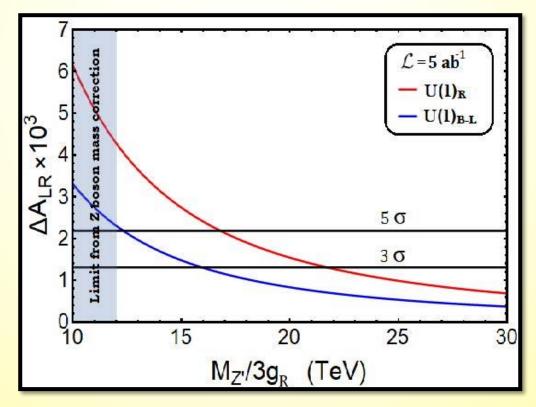


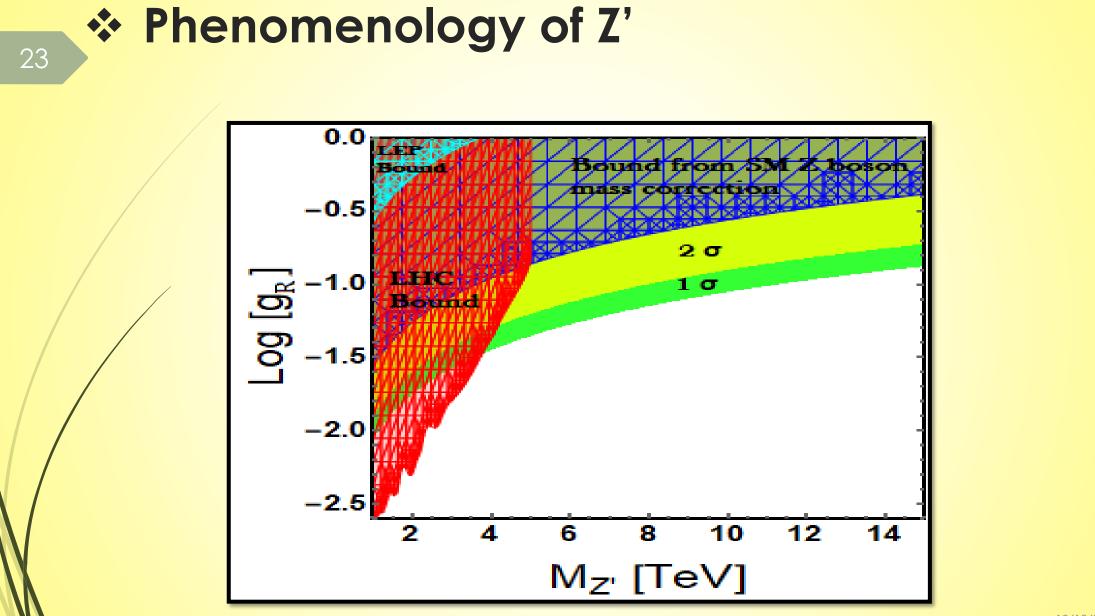
Multiplets	$SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_R$	
T i	$L_{Li}(1,2,-\frac{1}{2},0)$	
Leptons	$\ell_{Ri}(1,1,-1,-1) \ u_{Ri}(1,1,0,\{-5,4,4\})$	
	$H(1, 2, \frac{1}{2}, 1)$	
Scalars	$\chi(1,1,0,3)$	
	$S(1, 1, 0, -\frac{7}{2})$	
Vector-like fermion	$\frac{\eta(1,2,\frac{1}{2},\frac{1}{2})}{\mathcal{N}_{L,R}(1,1,0,\frac{1}{2})}$	
vector-like lefillion	$\mathcal{N}_{L,R}(1,1,0,\frac{1}{2})$	13/201

S.Jana, **VPK**, S.Saad (arXiv:1904.07407)

Constraints from LEP and LHC

21

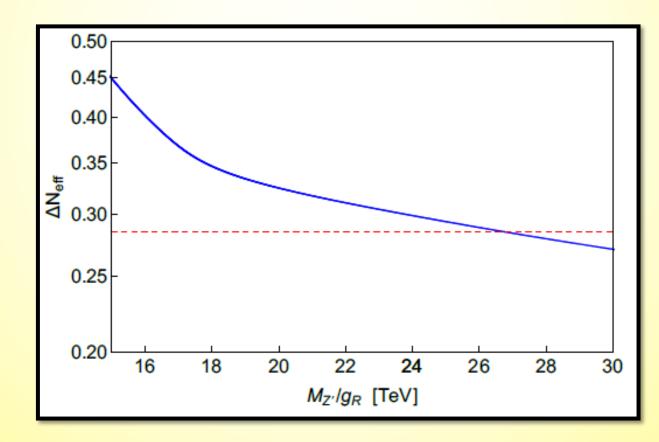



Heavy Gauge Boson Z' at ILC : Left-Right Asymmetry

22

$$\mathcal{L}_{eff} = \frac{1}{1 + \delta_{ef}} \frac{g_R^2}{M_{Z'}^2} (\bar{e}\gamma^\mu \mathcal{P}_R e) (\bar{f}\gamma_\mu \mathcal{P}_R f).$$

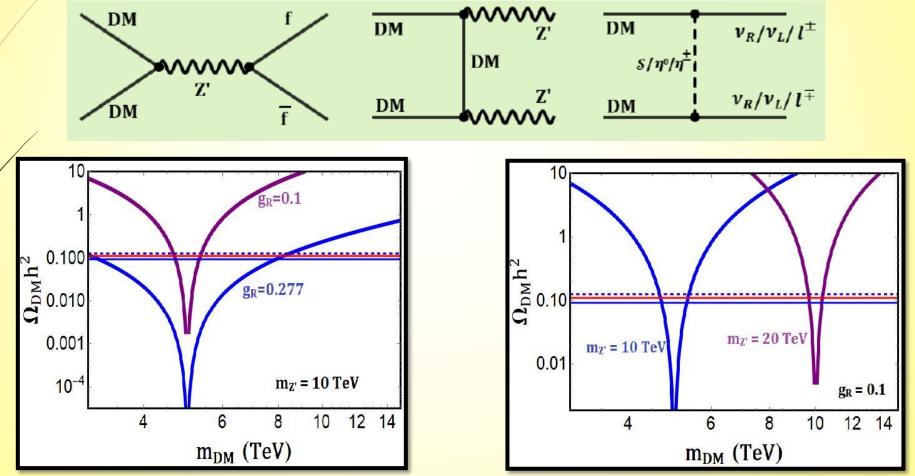
Analysis with the polarized initial states at ILC can be used to understand the chirality structure of the effective interaction

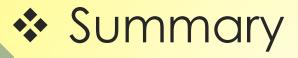


Constraints from Cosmology

24

The Right-handed neutrino ν_R can increase the effective number of relativistic degree of freedom N_{eff} .


To be compatible with the current cosmological constraints on N_{eff} , the interaction of ν_R with the primordial plasma must be highly suppressed.



Dark Matter Phenomenology

25

Spontaneously broken $U(1)_R$ symmetry, leave a Z_2 residual symmetry that can potentially stabilize the DM particle (considering for the case of vector-like fermion).

26

We constructed minimal Dirac neutrino mass models arising from generic oneloop and two-loop topologies for both colored and non-colored versions.

Out of the 40 models that we proposed <u>37 of them are new.</u>

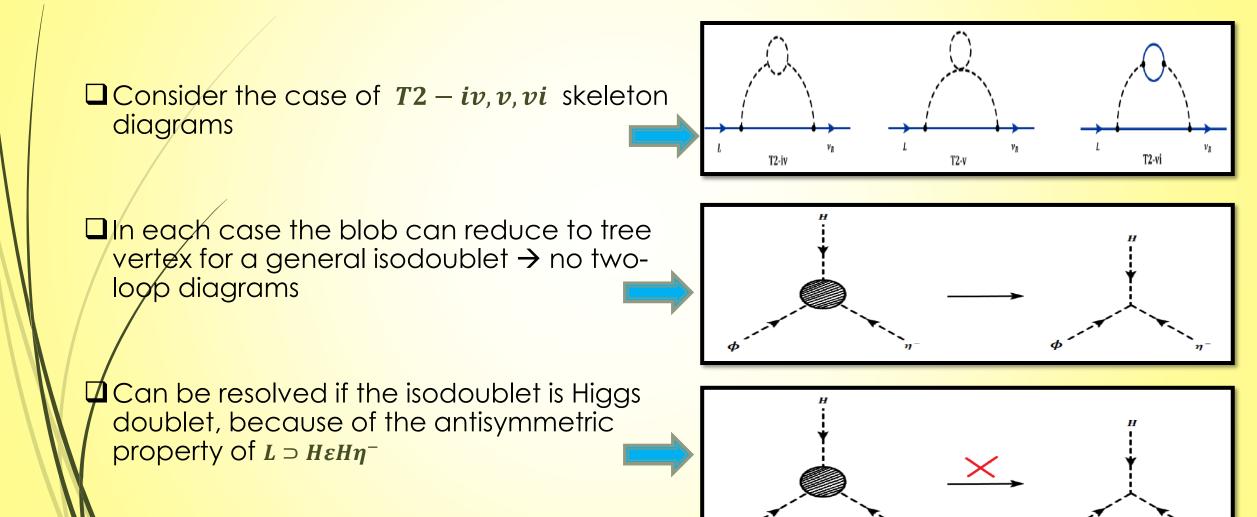
Out of the 17 non-colored models that we proposed <u>11 of them can naturally</u> <u>incorporate DM candidate</u>.

- \Box Every single model that we are presented in this work require no representation higher than the fundamental representation under $SU(2)_L$ and $SU(3)_C$.
- Our methodology can be implemented to construct new models by utilizing various different symmetries (discrete, global, gauge)
- Each of the models in this work can have very distinct phenomenology and must be studied case by case.

One-loop Models

\frown	6	2
-7	7	4
	5	2

Diagram	Models	Nev	v Fields	Relevant terms in Lagrangian	New ?
		Scalars	Fermions		
T1-i-1	T1-i-1-A	$\eta_1(1,1,1,2) \ \eta_2(1,1,1,5)$	_	$\begin{array}{c} y_1 \overline{L^c} \epsilon \eta_1 L + y_e \overline{L} H l_R \\ + y_2 \overline{l_R^c} \eta_2 \nu_R + \mu \eta_2 \eta_1^* \sigma^* \end{array}$	Saad, Zapata
	T1-i-1-B	$\eta(1,1,1,5) \ \phi(1,2,rac{3}{2},5)$	$\psi_{L,R}(1,1,-1,-4)$	$\begin{array}{c} y_1 \overline{L^c} \epsilon \phi \psi_L + y_2 \overline{\psi_L} \sigma^* l_R \\ + y_3 \overline{l_R^c} \eta \nu_R + \mu \phi^\dagger H \eta \end{array}$	~
	T1-i-1-C	$ \begin{array}{l} \eta(1,1,0,\frac{5}{2}) \\ \phi(1,2,\frac{1}{2},\frac{5}{2}) \end{array} $	$\psi_{L,R}(1,1,0,rac{3}{2})$	$\begin{array}{c} y_1 \overline{L} \epsilon \phi^* \psi_R + y_2 \overline{\psi_R^c} \sigma^* \psi_R \\ + y_3 \overline{\psi_R^c} \eta \nu_R + \mu \phi^{\dagger} H \eta \end{array}$	~
	T1-i-1-D	$ \begin{array}{c} \eta(1,1,0,\frac{5}{2}) \\ \phi(1,2,\frac{1}{2},\frac{5}{2}) \end{array} $	$\psi_{L,R}(1,1,0,-rac{3}{2})$	$\begin{array}{c} y_1 \overline{L^c} \epsilon \phi \psi_L + y_2 \overline{\psi_L^c} \sigma \psi_L \\ + y_3 \overline{\psi_L} \eta \nu_R + \mu \phi^{\dagger} H \eta \end{array}$	~
T1-i-2	T1-i-2-A	$ \begin{aligned} &\eta_1(1, 1, Y, 4 + \alpha) \\ &\eta_2(1, 1, Y, 1 + \alpha) \\ &\phi(1, 2, Y + \frac{1}{2}, 1 + \alpha) \end{aligned} $	$\psi_{L,R}(1,1,Y,\alpha)$	$ \frac{M_{\psi}\overline{\psi_L}\psi_R + y_1\overline{L}\epsilon\phi^*\psi_R}{+y_2\overline{\psi_L}\eta_1\nu_R + \mu_1\eta_1\eta_2^*\sigma^*} \\ + \mu_2\phi^{\dagger}H\eta_2 $	~
	T1-i-2-B	$ \begin{aligned} &\eta(1,1,Y,4+\alpha) \\ &\phi_1(1,2,Y+\frac{1}{2},1+\alpha) \\ &\phi_2(1,2,Y+\frac{1}{2},4+\alpha) \end{aligned} $	$\psi_{L,R}(1,1,Y,lpha)$	$ \begin{array}{c} M_{\psi} \overline{\psi_L} \psi_R + y_1 \overline{L} \epsilon \phi_1^* \psi_R \\ + y_2 \overline{\psi_L} \eta \nu_R + \mu_1 H \eta \phi_2^* \\ + \mu_2 \phi_1^{\dagger} \phi_2 \sigma^* \end{array} $	~
T1-i-3	T1-i-3-A	$\eta(1, 1, 1, 2)$	$\psi_{L,R}(1,1,-1,2)$	$\begin{array}{c} M_{\psi}\overline{\psi_{L}}\psi_{R}+y_{1}\overline{L^{c}}\epsilon\eta L\\ +y_{2}\overline{\psi_{R}^{c}}\eta\nu_{R}+y_{3}\overline{\psi_{L}}\sigma l_{R}\\ +y_{e}\overline{L}Hl_{R} \end{array}$	~
	T1-i-3-B	$\phi(1,2,Y+\tfrac{1}{2},1+\alpha)$	$\psi_{1L,R}(1,1,Y,\alpha) \\ \psi_{2L,R}(1,1,Y,\alpha-3) \\ \psi_{3L,R}(1,2,Y+\frac{1}{2},\alpha-3)$	$ \begin{array}{c} M_{\psi_1}\overline{\psi_{1L}}\psi_{1R} + M_{\psi_2}\overline{\psi_{2L}}\psi_{2R} \\ +y_1\overline{L}\epsilon\phi^*\psi_{1R} + y_2\overline{\psi_{2L}}\sigma^*\psi_{1R} \\ +y_3\overline{\psi_{3L}}H\psi_{2R} + y_4\overline{\psi_{3L}}\phi\nu_R \end{array} $	~
T1-ii-1	T1-ii-1-A	$\eta(1, 1, Y, 4 + \alpha) \\ \phi(1, 2, Y + \frac{1}{2}, 1 + \alpha)$	$\psi_{L,R}(1,1,Y,lpha)$	$\frac{M_{\psi}\overline{\psi_L}\psi_R + y_1\overline{L}\epsilon\phi^*\psi_R}{+y_2\overline{\psi_L}\eta\nu_R + \lambda\phi^{\dagger}H\eta\sigma^*} $ (Zaj	pata,Srivasta


One-loop Models: Colored version

29

	Diagram	Models	New Fields		Relevant terms in Lagrangian	New ?
			Scalars	Fermions		
	T1-i-1	T1-i-1-A(C)	$\begin{array}{c} \chi_1(\bar{3},1,\frac{1}{3},\frac{2}{3})\\ \chi_2(\bar{3},1,\frac{1}{3},\frac{11}{3}) \end{array}$	_	$y_1 \overline{L^c} \epsilon \chi_1 Q_L + y_d \overline{Q_L} H d_R + y_2 \overline{d_R^c} \chi_2 \nu_R + \mu \chi_2 \chi_1^* \sigma^*$	~
		T1-i-1-B(C)	$\frac{\Omega_1(3,2,\frac{1}{6},\frac{4}{3})}{\Omega_2(3,2,\frac{1}{6},\frac{13}{3})}$	_	$y_1 \overline{d_R} \Omega_1 \epsilon L + y_d \overline{Q_L} H d_R + y_2 \overline{Q_L} \Omega_2 \nu_R + \mu \Omega_1^{\dagger} \Omega_2 \sigma^*$	~
		T1-i-1-C(C)	$\frac{\chi(\bar{3},1,\frac{1}{3},\frac{11}{3})}{\Omega(\bar{3},2,\frac{5}{6},\frac{11}{3})}$	$\psi_{L,R}(3,1,-rac{1}{3},-rac{8}{3})$	$y_1 \overline{L^c} \epsilon \Omega \psi_L + y_2 \overline{\psi_L} \sigma^* d_R + y_3 \overline{d_R^c} \chi \nu_R + \mu \Omega^\dagger H \chi$	~
ŕ		T1-i-1-D(C)	$\frac{\boldsymbol{\chi}(\bar{3},1,-\frac{2}{3},\frac{11}{3})}{\Omega(\bar{3},2,-\frac{1}{6},\frac{11}{3})}$	$\psi_{L,R}(3,1,rac{2}{3},-rac{8}{3})$	$\begin{array}{c} y_1 \overline{L^c} \epsilon \Omega \psi_L + y_2 \overline{\psi_L} \sigma^* u_R \\ + y_3 \overline{u_R^c} \chi \nu_R + \mu \Omega^{\dagger} H \chi \end{array}$	~
	T1-i-2	T1-i-2-A(C)	$\begin{aligned} &\chi_1(3, 1, Y, 4 + \alpha) \\ &\chi_2(3, 1, Y, 1 + \alpha) \\ &\Omega(3, 2, Y + \frac{1}{2}, 1 + \alpha) \end{aligned}$	$\psi_{L,R}(3,1,Y,lpha)$	$M_{\psi}\overline{\psi_{L}}\psi_{R} + y_{1}\overline{L}\epsilon\Omega^{*}\psi_{R} + y_{2}\overline{\psi_{L}}\chi_{1}\nu_{R} + \mu_{1}\Omega^{\dagger}H\chi_{2} + \mu_{2}\chi_{1}\chi_{2}^{*}\sigma^{*}$	~
		T1-i-2-B(C)	$\frac{\chi(3, 1, Y, 4 + \alpha)}{\Omega_1(3, 2, Y + \frac{1}{2}, 1 + \alpha)}$ $\frac{\Omega_2(3, 2, Y + \frac{1}{2}, 4 + \alpha)}{\Omega_2(3, 2, Y + \frac{1}{2}, 4 + \alpha)}$	$\psi_{L,R}(3,1,Y,lpha)$	$ \begin{array}{c} M_{\psi}\overline{\psi_{L}}\psi_{R}+y_{1}\overline{L}\epsilon\Omega_{1}^{*}\psi_{R}\\ +y_{2}\overline{\psi_{L}}\chi\nu_{R}+\mu_{1}\Omega_{2}^{\dagger}H\chi\\ +\mu_{2}\Omega_{1}^{\dagger}\Omega_{2}\sigma^{*} \end{array} $	~
	T1-i-3	T1-i-3-A(C)	$\boldsymbol{\chi}(\bar{3},1,\tfrac{1}{3},\tfrac{2}{3})$	$\psi_{L,R}(3,1,-rac{1}{3},rac{10}{3})$	$ \begin{array}{c} M_{\psi}\overline{\psi_{L}}\psi_{R}+y_{1}\overline{L^{c}}\epsilon\chi Q_{L} \\ +y_{d}\overline{Q_{L}}Hd_{R}+y_{2}\overline{\psi_{R}^{c}}\chi\nu_{R} \\ +y_{3}\overline{\psi_{L}}\sigma d_{R} \end{array} $	~
		T1-i-3-B(C)	$\Omega(3, 2, \frac{1}{6}, \frac{13}{3})$	$\psi_{L,R}(3,1,-rac{1}{3},rac{10}{3})$	$ \begin{array}{l} M_{\psi}\overline{\psi_{L}}\psi_{R}+y_{1}\overline{L}\epsilon\Omega^{*}\psi_{R}\\ +y_{d}\overline{Q_{L}}Hd_{R}+y_{2}\overline{Q_{L}}\Omega\nu_{R}\\ +y_{3}\overline{\psi_{L}}\sigma d_{R} \end{array} $	~
	T1-ii-1	T1-ii-1-A(C)	$\frac{\boldsymbol{\chi}(3,1,Y,4+\alpha)}{\boldsymbol{\Omega}(3,2,Y+\frac{1}{2},1+\alpha)}$	$\psi_{L,R}(3,1,Y,lpha)$	$ \begin{array}{l} M_{\psi}\overline{\psi_{L}}\psi_{R}+y_{1}\overline{L}\epsilon\Omega^{*}\psi_{R}\\ +y_{2}\overline{\psi_{L}}\chi\nu_{R}+\lambda\Omega^{\dagger}H\sigma^{*}\chi \end{array} $	~

30

Search for Minimal Two-loop Models

R.Cepedello, R.M. Fonseca, M.Hirsch JHEP 1906 (2019) 034

Two-loop Models

31

Skeleton	Models	New Fields		Relevant terms in Lagrangian	New ?
		Scalars	Fermions		
T2-i	T2-i-2-A	$ \begin{aligned} &\eta_1(1,1,1,-3) \\ &\eta_2(1,1,1,5) \\ &\eta_3(1,1,-2,-2) \\ &\phi(1,2,\frac{1}{2},0) \end{aligned} $		$\begin{array}{l} y_1 \overline{L} \phi l_R + y_2 \overline{l_R^c} \eta_3^* l_R \\ + y_3 \overline{l_R^c} \eta_2 \nu_R + \mu \eta_1 \eta_2 \eta_3 \\ + \lambda \phi \epsilon H \sigma^* \eta_1^* \end{array}$	[52]
	T2-i-4-A	$ \begin{array}{l} \eta_1(1,1,1,0) \\ \eta_2(1,1,1,5) \\ \eta_3(1,1,-2,-2) \\ \phi(1,2,\frac{1}{2},0) \end{array} $		$\begin{array}{l} y_1 \overline{L}\phi l_R + y_2 \overline{l_R^c} \eta_3^* l_R \\ + y_3 \overline{l_R^c} \eta_2 \nu_R + \mu \phi \epsilon H \eta_1^* \\ + \lambda \eta_1 \eta_2 \eta_3 \sigma^* \end{array}$	~
	T2-i-11-A	$\begin{array}{l} \eta_1(1,1,1,5) \\ \eta_2(1,1,-2,-2) \\ \eta_3(1,1,-2,-5) \\ \phi(1,2,\frac{1}{2},0) \end{array}$	_	$\begin{array}{l} y_1 \overline{L} \phi l_R + y_2 \overline{l_R^c} \eta_2^* l_R \\ + y_3 \overline{l_R^c} \eta_1 \nu_R + \mu \eta_2 \eta_3^* \sigma^* \\ + \lambda \phi \epsilon H \eta_1 \eta_3 \end{array}$	~
T2-ii	T2-ii-1-A	$\begin{array}{l} \eta_1(1,1,1,2) \\ \eta_2(1,1,-(Y+1),2-\alpha) \\ \eta_3(1,1,-(Y+1),-(1+\alpha)) \end{array}$	$\psi_{1L,R}(1, 1, Y + 1, 2 + \alpha) \\ \psi_{2L,R}(1, 1, Y, \alpha)$	$\begin{array}{l} M_{\psi_1} \overline{\psi_{1L}} \psi_{1R} + M_{\psi_2} \overline{\psi_{2L}} \psi_{2R} \\ + y_1 \overline{L}^c \epsilon \eta_1 L + y_2 \overline{\psi_{2L}} \eta_3^s l_R \\ + y_3 \overline{\psi_{1R}^c} \eta_2 \nu_R + y_4 \overline{\psi_{1L}} \eta_1 \psi_{2R} \\ + y_c \overline{L} H l_R + \mu \eta_2 \eta_3^s \sigma^* \end{array}$	~
T2-iii	T2-iii-1-A	$\begin{array}{l} \eta_1(1,1,-1,-2) \\ \eta_2(1,1,-(Y+1),2-\alpha) \\ \eta_3(1,1,-(Y+1),-(1+\alpha)) \end{array}$	$ \begin{split} \psi_{1L,R}(1,1,-1,2) \\ \psi_{2L,R}(1,1,Y,\alpha) \end{split} $	$\begin{array}{l} y_1 \overline{L^c} \eta_1^* L + y_2 \overline{\psi_{2L}} \eta_3^* l_R \\ + y_3 \psi_{2L} \eta_2^* \psi_{1R} + y_4 \psi_{1R}^c \eta_1^* \nu_R \\ + y_c \overline{L} H l_R + \mu \eta_2 \eta_3^* \sigma^* \end{array}$	*
T2-iv	T2-iv-1-A	$\phi(1,2,Y,\alpha)$	$\psi_{L,R}(1,1,1,1)$	$ \begin{split} & M_{\psi} \overline{\psi_L} \psi_R + y_1 \overline{L^c} H^* \psi_L \\ & + y_2 \overline{\psi_R^c} \eta_1 \nu_R + \lambda_1 \phi^{\dagger} H \sigma^* \eta_2 \\ & + \lambda_2 \phi \epsilon H \eta_1 \eta_2^* \end{split} $	•
T2-v	T2-v-2-A	$ \begin{array}{l} \eta_1(1,1,-1,3) \\ \eta_2(1,1,Y+\frac{1}{2},\alpha-3) \\ \phi(1,2,Y,\alpha) \end{array} $	$\psi_{L,R}(1,1,1,1)$	$ \begin{split} & M_{\psi} \overline{\psi}_L \psi_R + y_1 \overline{L^c} H^* \psi_L \\ & + y_2 \overline{\psi}_R^c \eta_1 \nu_R + \lambda_1 \phi^{\dagger} H \eta_1 \eta_2 \\ & + \lambda_2 \phi \epsilon H \sigma^* \eta_2^* \end{split} $	~
T2-vi	T2-vi-3-A	$\eta(1,1,-1,3)$	$ \begin{split} \psi_{1L,R}(1,1,1,1) \\ \psi_{2L,R}(1,2,\frac{1}{2},-\frac{3}{2}) \\ \psi_{3L,R}(1,1,-1,\frac{3}{2}) \\ \psi_{4L,R}(1,1,0,\frac{3}{2}) \end{split} $	$\begin{array}{l} M_{\psi_{1}} \overline{\psi_{1L}} \psi_{1R} + y_{1} \overline{L^{c}} H^{*} \psi_{1L} \\ + y_{2} \overline{\psi_{1R}^{c}} \eta \nu_{R} \\ + y_{3} \overline{\psi_{4L/R}^{c}} \psi_{4L/R} \sigma^{*} \\ + y_{4} \overline{\psi_{2L/R}^{c}} \psi_{4L/R} H^{*} \\ + y_{5} \overline{\psi_{2L/R}^{c}} \psi_{3L/R} \epsilon H \\ + y_{6} \overline{\psi_{3L/R}^{c}} \psi_{4L/R} \eta^{*} \end{array}$	~

Two-loop Models: Colored version

$\mathbf{}$	\mathbf{O}
.5	
$\mathbf{\tilde{\mathbf{v}}}$	_

Skeleton	Models	New Fields		Relevant terms in Lagrangian	New ?
Skeleton	Models	Scalars	Fermions	Relevant terms in Lagrangian	Itew .
Т2-і	T2-i-2-A(C)	$\begin{array}{c} \chi_1(\underline{3}, 1, \frac{1}{3}, -\frac{13}{3}) \\ \chi_2(\overline{3}, 1, \frac{1}{3}, \frac{11}{3}) \\ \chi_3(\underline{3}, 1, -\frac{2}{3}, \frac{2}{3}) \\ \Omega(\underline{3}, 2, -\frac{1}{6}, -\frac{4}{3}) \end{array}$		$y_1\overline{L}\Omega d_R + y_2\overline{d_R^c}\chi_3^*d_R + y_3\overline{d_R^c}\chi_2\nu_R + \mu\chi_1\chi_2\chi_3 + \lambda\Omega\epsilon H\sigma^*\chi_1^*$	~
	T2-i-2-B(C)	$\begin{array}{c} \chi_1(3,1,-\frac{2}{3},-\frac{13}{3})\\ \chi_2(3,1,-\frac{2}{3},\frac{11}{3})\\ \chi_3(\overline{3},1,\frac{4}{3},\frac{2}{3})\\ \Omega(\overline{3},2,-\frac{2}{5},-\frac{4}{3}) \end{array}$		$\begin{array}{l} y_1 \overline{L} \Omega u_R + y_2 \overline{u_R^{*}} \chi_3^* u_R \\ + y_3 \overline{u_R^{*}} \chi_2 \nu_R + \mu \chi_1 \chi_2 \chi_3 \\ + \lambda \Omega \epsilon H \sigma^* \chi_1^* \end{array}$	~
	T2-i-4-A(C)	$\begin{array}{c} \chi_1(3, 1, \frac{1}{3}, -\frac{4}{3}) \\ \chi_2(3, 1, \frac{1}{3}, \frac{13}{3}) \\ \chi_3(3, 1, -\frac{2}{3}, \frac{2}{3}) \\ \Omega(3, 2, -\frac{1}{6}, -\frac{4}{3}) \end{array}$		$y_1 L \Omega d_R + y_2 \overline{d_R^*} \chi_3^* d_R + y_3 \overline{d_R^*} \chi_2 \nu_R + \mu \Omega \epsilon H \chi_1^* + \lambda \chi_1 \chi_2 \chi_3 \sigma^*$	~
	T2-i-4-B(C)	$\begin{array}{c} \chi_1(3,1,-\frac{2}{3},-\frac{4}{3})\\ \chi_2(3,1,-\frac{2}{3},\frac{11}{3})\\ \chi_3(3,1,\frac{4}{3},\frac{2}{3})\\ \Omega(3,2,-\frac{2}{5},-\frac{4}{3}) \end{array}$		$y_1 \overline{L} \Omega u_R + y_2 \overline{u_R^{\bullet}} \chi_3^{\bullet} u_R \\ + y_3 \overline{u_R^{\bullet}} \chi_2 \nu_R + \mu \Omega \epsilon H \chi_1^{\bullet} \\ + \lambda \chi_1 \chi_2 \chi_3 \sigma^{\bullet}$	~
	T2-i-11-A(C)	$\begin{array}{c} \chi_1(3, 1, \frac{1}{3}, \frac{11}{3}) \\ \chi_2(3, 1, -\frac{2}{3}, \frac{2}{3}) \\ \chi_3(3, 1, -\frac{2}{3}, -\frac{7}{3}) \\ \Omega(\overline{3}, 2, -\frac{1}{6}, -\frac{4}{3}) \end{array}$		$\begin{array}{l} y_1 \overline{L} \Omega d_R + y_2 \overline{d_R^*} \chi_2^* d_R \\ + y_3 \overline{d_R^*} \chi_1 \nu_R + \mu \chi_2 \chi_3^* \sigma^* \\ + \lambda \Omega \epsilon H \chi_1 \chi_3 \end{array}$	~
	T2-i-11-B(C)	$\begin{array}{c} \chi_1(\underline{3}, 1, -\frac{2}{3}, \frac{11}{3}) \\ \chi_2(\underline{3}, 1, \frac{4}{3}, \frac{2}{3}) \\ \chi_3(\underline{3}, 1, \frac{4}{3}, -\frac{7}{3}) \\ \Omega(\underline{3}, 2, -\frac{7}{6}, -\frac{4}{3}) \end{array}$		$y_1 \overline{L} \Omega u_R + y_2 \overline{u_R^*} \chi_2^* u_R \\ + y_3 \overline{u_R^*} \chi_1 \nu_R + \mu \chi_2 \chi_3^* \sigma^* \\ + \lambda \Omega \epsilon H \chi_1 \chi_3$	~
	T2-i-11-C(C)	$\begin{array}{c} \chi_1(3, 1, -\frac{1}{3}, -\frac{2}{3}) \\ \chi_2(3, 1, -\frac{1}{3}, -\frac{2}{3}) \\ \chi_3(3, 1, -\frac{1}{3}, -\frac{11}{3}) \\ \Omega(3, 2, \frac{1}{6}, \frac{1}{3}) \end{array}$		$\begin{array}{l} y_1 \overline{L} \overline{\epsilon} \epsilon \chi_1^* Q_L + y_2 \overline{Q_L^*} \epsilon Q_L \chi_2 \\ + y_3 \overline{Q_L} \Omega \nu_R + \mu \chi_2 \chi_3^* \sigma^* \\ + \lambda \Omega \epsilon H \chi_1 \chi_3 \end{array}$	~
	T2-i-15-A(C)	$\begin{array}{c} \chi_1(3, 1, \frac{2}{3}, \frac{13}{3}) \\ \chi_2(3, 1, -\frac{1}{3}, -\frac{2}{3}) \\ \chi_3(3, 1, -\frac{1}{3}, -\frac{2}{3}) \\ \Omega(3, 2, \frac{1}{6}, \frac{13}{3}) \end{array}$		$y_1 \overline{L^e} \epsilon_{\xi \chi_2^*} Q_L + y_2 \overline{Q_L^e} \epsilon Q_L \chi_3 + y_3 \overline{Q_L} \Omega \nu_R + \mu \chi_1^* \Omega \epsilon H + \lambda \chi_1 \chi_2 \chi_3 \sigma^*$	~
	T2-i-17-A(C)	$\begin{array}{c} \chi_1(3,1,\frac{2}{3},\frac{4}{3})\\ \chi_2(3,1,-\frac{1}{3},-\frac{2}{3})\\ \chi_3(3,1,-\frac{1}{3},-\frac{2}{3})\\ \Omega(3,2,\frac{1}{6},\frac{13}{3}) \end{array}$		$\begin{array}{l} y_1 \overline{L^e} e_{\chi_2^*} Q_L + y_2 \overline{Q_L^e} e_{Q_L \chi_3} \\ + y_3 \overline{Q_L} \Omega \nu_R + \mu \chi_1 \chi_2 \chi_3 \\ + \lambda \sigma^* \chi_1^* \Omega e H \end{array}$	~
T2-ii	T2-ii-1-A(C)	$\begin{array}{c} \chi_1(3,1,\frac{1}{3},\frac{2}{3})\\ \chi_2(\bar{3},1,-Y-\frac{1}{3},\frac{10}{3}-\alpha)\\ \chi_3(3,1,-Y-\frac{1}{3},\frac{1}{3}-\alpha) \end{array}$	$ \psi_{1L,R}(3,1,Y+\frac{1}{3},\alpha+\frac{2}{3}) \\ \psi_{2L,R}(3,1,Y,\alpha) $	$\begin{array}{l} M_{\psi_1}\overline{\psi_{1L}}\psi_{1R} + M_{\psi_2}\overline{\psi_{2L}}\psi_{2R} \\ +y_1L^c\epsilon_{\chi_1}Q_L + y_2\psi_{2L}\chi_3^cd_R \\ +y_3\psi_{1R}^c\chi_{2\nu_R} + y_4\psi_{1L\chi_1}\psi_{2R} \\ +y_dQ_LHd_R + \mu\chi_{2\chi_3^c}\sigma^* \end{array}$	~
T2-iii	T2-iii-1-A(C)	$\frac{\chi_1(3, 1, -\frac{1}{3}, -\frac{2}{3})}{\chi_2(\bar{3}, 1, -(Y + \frac{1}{3}), \frac{10}{3} - \alpha)}$ $\frac{\chi_3(\bar{3}, 1, -(Y + \frac{1}{3}), \frac{1}{3} - \alpha)}{\chi_3(\bar{3}, 1, -(Y + \frac{1}{3}), \frac{1}{3} - \alpha)}$	$\begin{array}{l} \psi_{1L,R}(3,1,-\frac{1}{3},\frac{10}{3}) \\ \psi_{2L,R}(3,1,Y,\alpha) \end{array}$	$y_1 \overline{Q_L^c} \chi_1^* L + y_2 \overline{\psi_{2L}} \chi_3^* d_R + y_3 \overline{\psi_{2L}} \chi_2^* \psi_{1R} + y_4 \overline{\psi_{1R}^c} \chi_1^* \nu_R + y_d \overline{Q_L} H d_R + \mu \chi_2 \chi_3^* \sigma^*$	~
T2-iv	T2-iv-1-A(C)	$ \begin{array}{l} \eta(1, 1, -1, 3) \\ \chi(3, 1, Y - \frac{1}{2}, \alpha + 3) \\ \Omega(3, 2, Y, \alpha) \end{array} $	$\psi_{L,R}(1,1,1,1)$	$M_{\psi}\overline{\psi_L}\psi_R + y_1\overline{L^c}H^*\psi_L + y_2\overline{\psi_R^c}\eta\nu_R + \lambda_1\Omega^{\dagger}H\sigma^*\chi + \lambda_2\Omega\epsilon H\eta\chi^*$	~
T2-v	T2-v-2-A(C)	$ \begin{array}{l} \eta_1(1,1,-1,3) \\ \boldsymbol{\chi}(3,1,Y+\frac{1}{2},\alpha-3) \\ \Omega(3,2,Y,\alpha) \end{array} $	$\psi_{L,R}(1,1,1,1)$	$M_{\psi}\overline{\psi_L}\psi_R + y_1\overline{L^c}H^*\psi_L + y_2\overline{\psi_R^c}\eta\nu_R + \lambda_1\Omega^{\dagger}H\eta\chi + \lambda_2\Omega\epsilon H\sigma^*\chi^*$	~
T2-vi	T2-vi-4-A(C)	$\eta_1(1, 1, -1, 3) \ \eta_2(1, 1, -1, 0)$	$\begin{array}{l} \psi_{1L,R}(1,1,1,1) \\ \psi_{2L,R}(3,2,Y,\alpha) \\ \psi_{3L,R}(3,1,-Y-\frac{1}{2},-\alpha) \\ \psi_{4L,R}(\bar{3},1,-Y+\frac{1}{2},-\alpha) \end{array}$	$\begin{split} & M_{\psi_1}\overline{\psi_{1L}}\psi_{1R} + M_{\psi_4}\overline{\psi_{4L}}\psi_{4R} \\ & +y_1L^{\overline{c}}H^*\psi_{1L} + y_2\psi_{1R}^{\overline{c}}\eta_1\nu_R \\ & +y_3\overline{\psi_{2L/R}^{\overline{c}}}\psi_{4L/R}H^* \\ & +y_4\overline{\psi_{2L/R}^{\overline{c}}}\psi_{3L/R}\epsilon H \\ & +y_5\overline{\psi}_{4R/L}\overline{\psi}_{3L/R}\eta_2^* + \mu\eta_1\eta_2^*\sigma^* \end{split}$	~