Probing top Higgs Yukawa coupling at the LHC via single top +h production

Ya-Juan Zheng (Univ. of Kansas)

Oct 12, 2019 @ Particle Physics on the Plains 2019

In collaboration with Vernon Barger (U. Wisconsin) and Kaoru Hagiwara (KEK), PRD99(2019)031701 [arXiv:1807.00281] and work in progress.

Outline

- Top Higgs Yukawa couplings with CP violation
- Helicity amplitudes: t+h: ub > dt h and \overline{db} > \overline{ut} h \overline{t} +h: d \overline{b} > ut h and \overline{ub} > \overline{dt} h
- Single top + Higgs event distributions
- Azymuthal asymmetry $A\phi$ of $t/\bar{t}+h+jet$ distributions
- Top quark polarisation P₂
- Summary

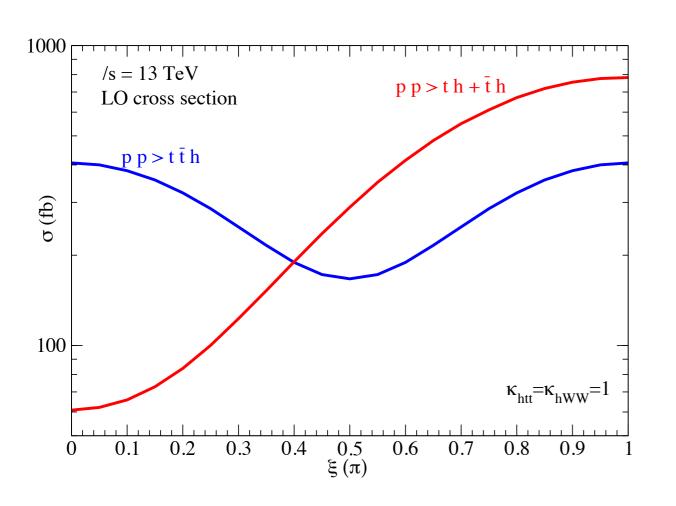
Top Yukawa coupling

$$\mathcal{L} = -g_{htt}h\bar{t}\left(\cos\xi_{htt} + i\sin\xi_{htt}\gamma_{5}\right)t$$

$$= -g_{htt}h(t_{R}^{\dagger}, t_{L}^{\dagger})\begin{pmatrix}e^{-i\xi_{htt}} & 0\\0 & e^{i\xi_{htt}}\end{pmatrix}\begin{pmatrix}t_{L}\\t_{R}\end{pmatrix}$$

$$= -g_{htt}h(e^{-i\xi_{htt}}t_{R}^{\dagger}t_{L} + e^{i\xi_{htt}}t_{L}^{\dagger}t_{R})$$

$$g_{htt} = \frac{m_{t}}{v}\kappa_{htt}, \qquad \kappa_{htt} > 0, \quad -\pi < \xi_{htt} \le \pi$$



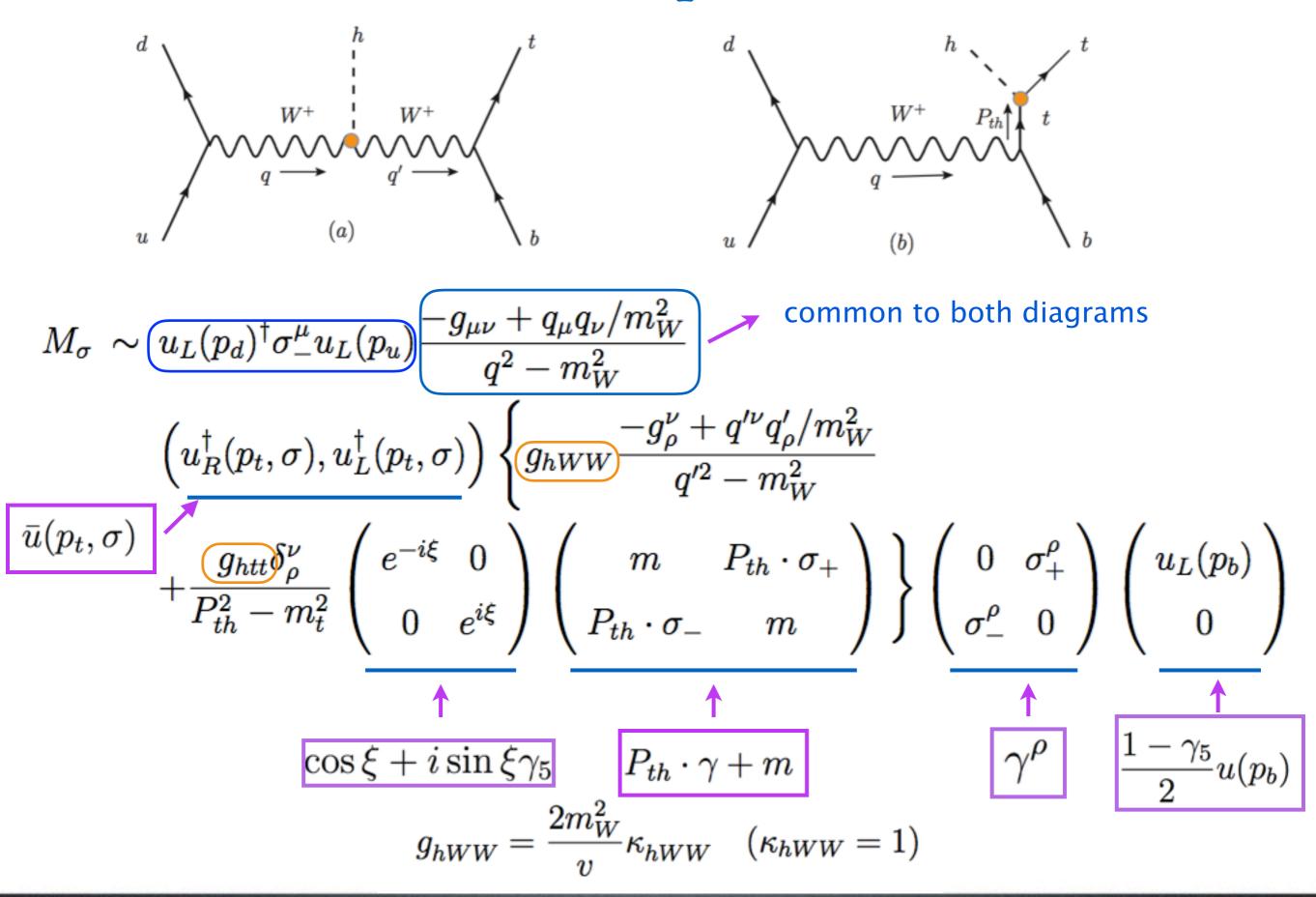
$$pp \rightarrow th + \bar{t}h + \text{anything}$$

 $\sigma_{tot}(|\xi_{htt}| = \pi) \sim 13 \sigma_{tot}^{SM}(\xi_{htt} = 0)$

change the sign of Yukawa coupling

In the SM, strong destructive interference between the htt and hWW amplitudes

ub > dth amplitudes



The common W propagator

The W propagator $D_W(q)$ can be expressed as a summation over three polarisation states because of current conservation

$$-g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{m_W^2} \longrightarrow -g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{q^2}$$
$$= \sum_{\lambda=\pm 1,0} (-1)^{\lambda+1} \epsilon^*_{\mu}(q,\lambda) \epsilon_{\nu}(q,\lambda)$$

$$q_{\mu}u_{L}^{\dagger}(p_{d})\sigma_{-}^{\mu}u_{L}(p_{u})=0$$

for $m_{u}=m_{d}=0$

The factor is needed for space like vector boson. e.g. in the Breit frame:

$$q^{\mu} = (0, 0, 0, Q) \qquad (q^{2} = -Q^{2} < 0)$$

$$-g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{q^{2}} = diag(-1, 1, 1, 1) + diag(0, 0, 0, -1)$$

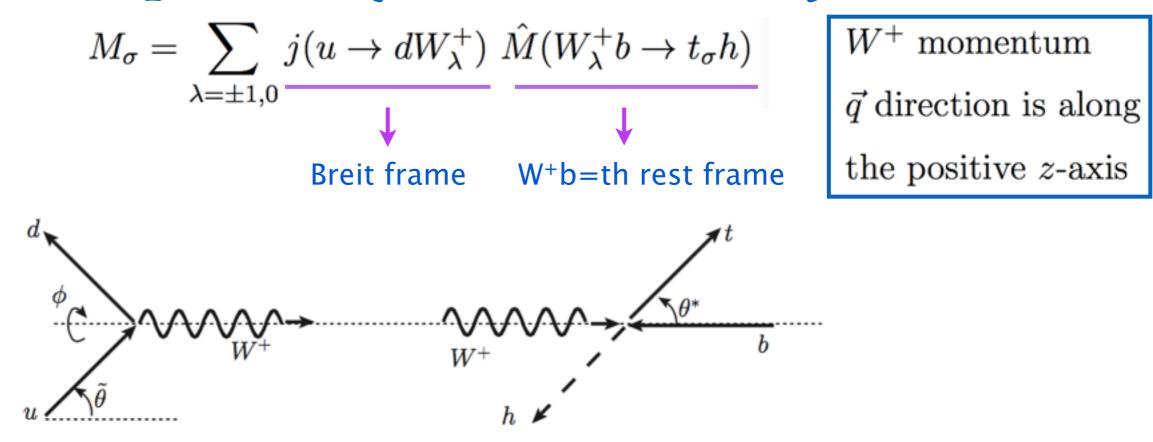
$$= diag(-1, 1, 1, 0)$$

$$\epsilon^{\mu}(q, \lambda = \pm) = \frac{1}{\sqrt{2}}(0, \mp 1, -i, 0)$$

$$\epsilon^{\mu}(q, \lambda = 0) = (1, 0, 0, 0)$$

$$\sum_{\lambda = \pm 1, 0} (-1)^{\lambda + 1} \epsilon^{*}_{\mu}(q, \lambda) \epsilon_{\nu}(q, \lambda) = diag(-1, 1, 1, 0)$$

Amplitudes (u > d+W⁺ emission)



Breit frame

$$p_{u}^{\mu} = \tilde{\omega}(1, \sin\tilde{\theta}\cos\phi, -\sin\tilde{\theta}\sin\phi, \cos\tilde{\theta}),$$

$$p_{d}^{\mu} = \tilde{\omega}(1, \sin\tilde{\theta}\cos\phi, -\sin\tilde{\theta}\sin\phi, -\cos\tilde{\theta}),$$

$$q^{\mu} = p_{u}^{\mu} - p_{d}^{\mu} = (0, 0, 0, 2\tilde{\omega}\cos\tilde{\theta}) = (0, 0, 0, Q)$$

$$\tilde{\omega}\cos\tilde{\theta} = \frac{1}{2\hat{s}/(W^{2} + Q^{2}) - 1}$$

$$\tilde{\omega} = Q/2 \left(2\hat{s}/(W^{2} + Q^{2}) - 1\right)$$

$$\tilde{\omega}\cos\tilde{\theta} = Q/2$$

$$\tilde{\omega}\cos\tilde{\theta} = Q/2$$

$$j_{\lambda} = (-1)^{(\lambda+1)}u_{L}^{\dagger}(p_{d})\sigma_{-}^{\mu}u_{L}(p_{u})\epsilon_{\mu}^{*}(q,\lambda) = \begin{cases} \pm\sqrt{2}\tilde{\omega}(1\pm\cos\tilde{\theta})e^{\pm i\phi}, & \text{if } \lambda = \pm 1 \\ -2\tilde{\omega}\sin\tilde{\theta}, & \text{if } \lambda = 0 \end{cases}$$

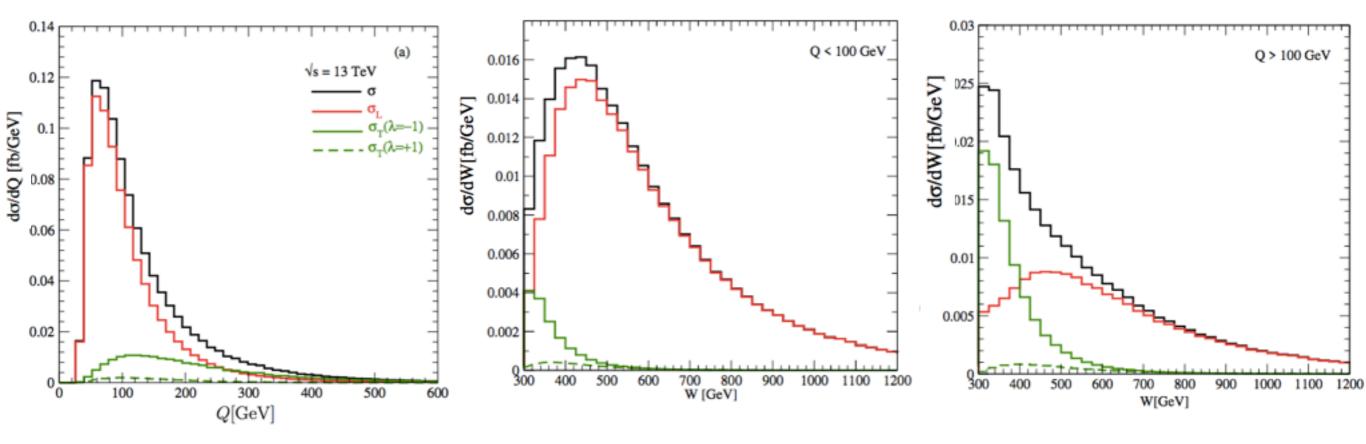
Amplitudes (full process u b > d t h)

$$M_{\sigma} = \sum_{\lambda = \pm 1,0} j(u \to dW_{\lambda}^{+}) \ \hat{M}(W_{\lambda}^{+}b \to t_{\sigma}h)$$

$$\begin{split} M_{+} &= \frac{1-\tilde{c}}{2}e^{i\phi}\sin\frac{\theta^{*}}{2}A\frac{1+\cos\theta^{*}}{2} \\ &+ \frac{1+\tilde{c}}{2}e^{-i\phi}\sin\frac{\theta^{*}}{2}\left[A\left(\frac{1+\cos\theta^{*}}{2}+\epsilon_{1}\right)-B\left(e^{-i\xi}+\delta\delta' e^{i\xi}\right)\right] \\ &+ \frac{\tilde{s}}{2}\cos\frac{\theta^{*}}{2}\frac{W}{Q}\left[A\left(\frac{q^{*}E_{h}^{*}+q^{0*}p^{*}\cos\theta^{*}}{Wp^{*}}+\epsilon_{1}\right)-B\left(e^{-i\xi}+\delta\delta' e^{i\xi}\right)\right] \\ &+ \frac{\tilde{s}}{2}\cos\frac{\theta^{*}}{2}\frac{W}{Q}\left[A\left(\frac{q^{*}E_{h}^{*}+q^{0*}p^{*}\cos\theta^{*}}{2}+\epsilon_{1}\right)-B\left(e^{-i\xi}+\delta\delta' e^{i\xi}\right)\right] \\ &\leftarrow \lambda=0 \\ J_{2}=1/2 \\ M_{-} &= -\frac{1-\tilde{c}}{2}e^{i\phi}\cos\frac{\theta^{*}}{2}A\delta\frac{1-\cos\theta^{*}}{2} \\ &- \frac{1+\tilde{c}}{2}e^{-i\phi}\cos\frac{\theta^{*}}{2}\left[A\left(\delta\frac{1-\cos\theta^{*}}{2}-\epsilon_{2}\right)+B\left(\delta e^{-i\xi}+\delta' e^{i\xi}\right)\right] \\ &\leftarrow \lambda=0 \\ J_{2}=1/2 \\ &\leftarrow \lambda=0 \\ J_{2}=-1/2 \\ &\leftarrow \lambda=0 \\ J_{2}=-1/2 \\ &\leftarrow \lambda=0 \\ J_{2}=-1/2 \\ M_{-} &= 2g^{2}\frac{D_{W}(q)\tilde{\omega}\sqrt{2q^{*}(E^{*}+p^{*})}\frac{mp^{*}}{mW}(g_{htt})}{Mg_{htt}}D_{U}(P_{th}), \\ B &= -2g^{2}\frac{D_{W}(q)\tilde{\omega}\sqrt{2q^{*}(E^{*}+p^{*})}W(g_{htt})}{Mg_{htt}}D_{U}(P_{th}), \\ \end{pmatrix} \end{split}$$

Q and **W** distribution

 $Q = \sqrt{-q^2}$ invariant momentum transfer of the virtual W⁺ $W = \sqrt{P_{th}^2} = m(th)$ the invariant mass of the th system



 W_L is dominant in low Q (Q<100 GeV) and large W (W>400 GeV) W_T is significant in large Q (Q>100 GeV) and small W (W<400 GeV)

Azimuthal angle distribution

$$\frac{d\sigma}{dWd\phi} \sim |M_+|^2 + |M_-|^2$$

For instance, at high W

$$\begin{split} M_{+} &\sim \frac{1+\tilde{c}}{2} e^{-i\phi} \sin \frac{\theta^{*}}{2} \left[A \frac{1+\cos \theta^{*}}{2} - \underline{B} e^{-i\xi} \right] \\ &+ \frac{\tilde{s}}{2} \cos \frac{\theta^{*}}{2} \overline{\frac{W}{Q}} \quad \left[A \frac{1+\cos \theta^{*}}{2} - \underline{B} e^{-i\xi} \right] \\ &\lambda = 0 \end{split}$$

 $|M_+|^2$ contains terms proportional to $\,\sin\phi\sin\xi$

in the interference between $\lambda = -1$ and $\lambda = 0$ terms. $\longrightarrow A_{\varphi}$

Asymmetry is large at small W & large Q (W_T is comparable to W_L) small at large W & small Q (W_L dominates over W_T)

 $|M_-|^2$ contains terms proportional to $2\cos\xi$ \longrightarrow not sensitive to CPV

Azimuthal angle distribution

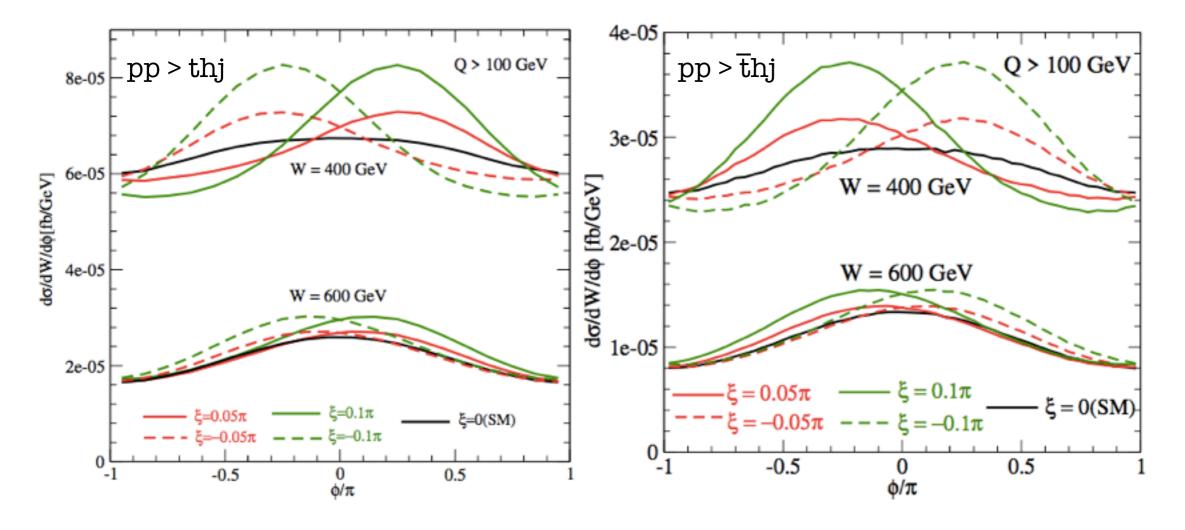


FIG. 8: Left panel: t. Right panel: \bar{t} . $d\sigma/dW/d\phi$ v.s. ϕ at W = 400 and 600 GeV for Q > 100 GeV. Black, red and green curves are for the SM ($\xi = 0$), $\xi = \pm 0.1\pi$, and $\pm 0.2\pi$. The solid curve are for $\xi \ge 0$, while the dashed curves are for $\xi < 0$.

asymmetry
$$A_{\phi}(W) = \frac{\int_{0}^{\pi} d\sigma/dW/d\phi - \int_{-\pi}^{0} d\sigma/dW/d\phi}{\int_{0}^{\pi} d\sigma/dW/d\phi + \int_{-\pi}^{0} d\sigma/dW/d\phi} = 0 \ (th) \ and < 0 \ (\bar{t}h) \ for \ \xi > 0$$

 $< 0 \ (th) \ and > 0 \ (\bar{t}h) \ for \ \xi < 0$

Asymmetry is large at small W & large Q (W_T is comparable to W_L) small at large W & small Q (W_L dominates over W_T)

Azimuthal asymmetry A_{ϕ}

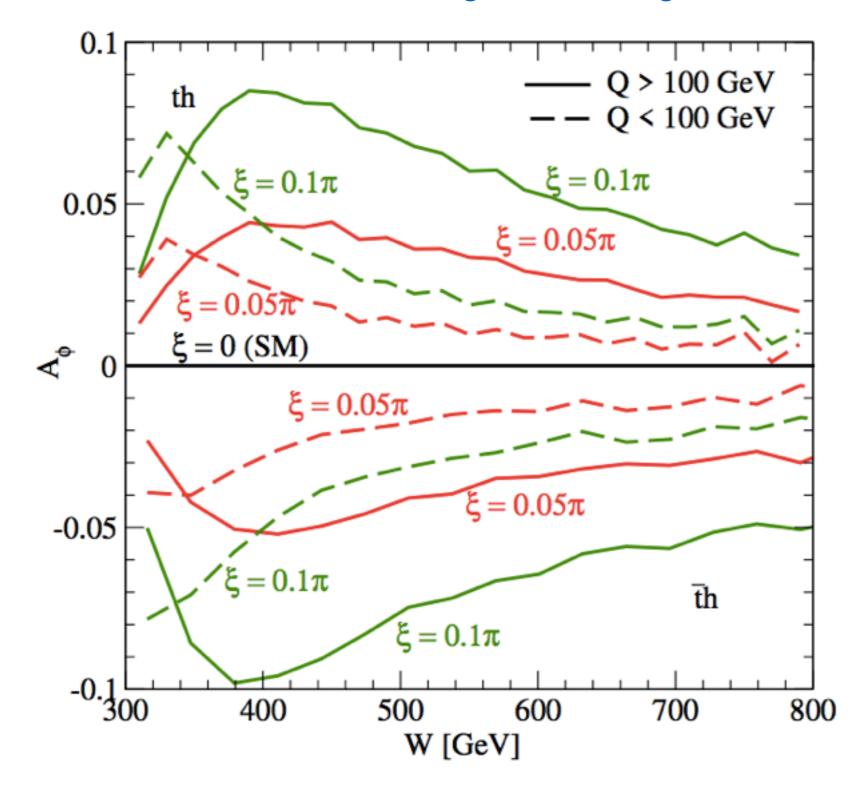


FIG. 11: Asymmetry $A_{\phi}(W)$ for $pp \to thj$ and $pp \to \bar{t}hj$

Top Polarization (pure state)

Because only the left-handed u,d,b quarks contribute to the process u b > d t h, the helicity amplitudes M_+ and M_- are determined uniquely as complex numbers for the top quark of definite momentum in the t+h rest frame. The produced top quark polarisation state is then expressed as the superposition

$$|t> = \frac{M_+|J_z=+\frac{1}{2}>+M_-|J_z=-\frac{1}{2}>}{\sqrt{|M_+|^2+|M_-|^2}}$$

The polarisation direction is determined by $M_{\rm +}$ and $M_{\rm -}$

$$\begin{aligned} |(\theta,\phi)\rangle &= R_{z}(\phi)R_{y}(\theta)|J_{z} = +\frac{1}{2} > \\ &= \begin{pmatrix} e^{-i\frac{\phi}{2}} & 0\\ 0 & e^{i\frac{\phi}{2}} \end{pmatrix} \begin{pmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2}\\ \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix} \begin{pmatrix} 1\\ 0 \end{pmatrix} \\ &= e^{-i\frac{\phi}{2}}\cos\frac{\theta}{2} \begin{pmatrix} 1\\ 0 \end{pmatrix} + e^{i\frac{\phi}{2}}\sin\frac{\theta}{2} \begin{pmatrix} 0\\ 1 \end{pmatrix} \\ &= \frac{M_{+}}{\sqrt{|M_{+}|^{2} + |M_{-}|^{2}}} \begin{pmatrix} 1\\ 0 \end{pmatrix} + \frac{M_{-}}{\sqrt{|M_{+}|^{2} + |M_{-}|^{2}}} \begin{pmatrix} 0\\ 1 \end{pmatrix} \end{aligned}$$

The top spin orientation (Θ , ϕ) in the top rest frame is determined by the top momentum in the Wb to th scattering plane where the helicity amplitudes are obtained. The sin ϕ component (polarization perpendicular to the scattering plane) appears only when M₊ and M₋ is have relate complex phase(->CPV)

Top Polarization (pure state)

The top quark polarisation can be expressed by a 3-vector $\mathbf{P} = (P_1, P_2, P_3)$ by using the density matrix formalism.

For the pure state, the density matrix reads

$$\begin{split} \rho &= \frac{1}{|M_{+}|^{2} + |M_{-}|^{2}} \begin{pmatrix} |M_{+}|^{2} & M_{+}M_{-}^{*} \\ M_{-}M_{+}^{*} & |M_{-}|^{2} \end{pmatrix} = \begin{pmatrix} \cos^{2}\frac{\theta}{2} & \cos\frac{\theta}{2}\sin\frac{\theta}{2}e^{-i\phi} \\ \cos\frac{\theta}{2}\sin\frac{\theta}{2}e^{i\phi} & \sin^{2}\frac{\theta}{2} \end{pmatrix} \\ &= \frac{1}{2} \begin{pmatrix} 1 + \cos\theta & \sin\theta e^{-i\phi} \\ \sin\theta e^{i\phi} & 1 - \cos\theta \end{pmatrix} \\ &= \frac{1}{2} \begin{cases} 1 + \sin\theta\cos\phi \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + \sin\theta\sin\phi \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} + \cos\theta \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \end{cases} \\ & \downarrow & \downarrow & \downarrow & 0'^{1} & P_{2} & 0'^{2} & P_{3} & 0'^{3} \end{split}$$

 $\vec{P} = (P_1, P_2, P_3) = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$

Top Polarization (mixed state)

For general mixed state, we introduce differential cross section matrix

$$d\sigma_{\lambda\lambda'} = \int dx_1 \int dx_2 D_{u/p}(x_1) D_{b/p}(x_2) \frac{1}{2\hat{s}} \overline{\sum} M_\lambda M_{\lambda'}^* d\Phi_{dth}$$

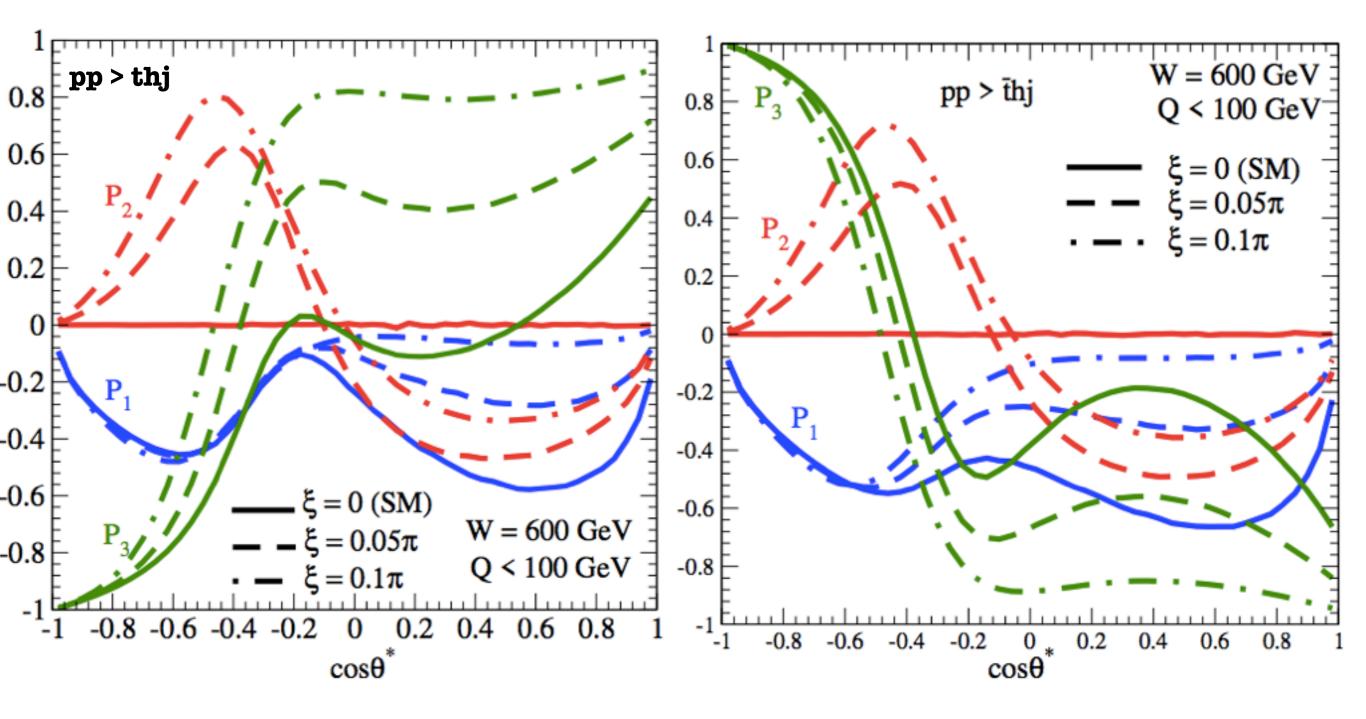
where the phase space integration can be restricted. For an arbitrary kinematical distributions, $d\sigma = d\sigma_{++} + d\sigma_{--}$, the polarisation density matrix is defined as

$$\rho_{\lambda\lambda'} = \frac{d\sigma_{\lambda\lambda'}}{d\sigma_{++} + d\sigma_{--}} = \frac{1}{2} \left[\delta_{\lambda\lambda'} + \sum_{k=1}^{3} P_k \sigma_{\lambda\lambda'}^k \right]$$

The 3-vector $\mathbf{P} = (P_1, P_2, P_3)$ gives the general polarisation of the top quark. The magnitude $P = |\mathbf{P}|$ gives the degree of polarisation (P=1 for 100% polarization, P=0 for no polarisation). The orientation gives the direction of the top quark spin in the top rest frame. $P_2 = -2 \text{Im}(M_+ M_-^*)/(|M_+|^2 + |M_-|^2)$

We find **P** lies in the W+b>th scattering plane in the SM (xi=0). Polarisation orthogonal to the production plane P_2 appears for nonzero xi. The sign of P_2 determines the sign of xi.

Top Polarization and anti-Top Polarisation $P = (P_1, P_2, P_3)$



We find large positive P_2 when $\cos \theta^* < 0$, both for t and tbar. We therefore examine P_2 for events with $\cos \theta^* < 0$ in the next slides.

Polarization P₂ of t and thar

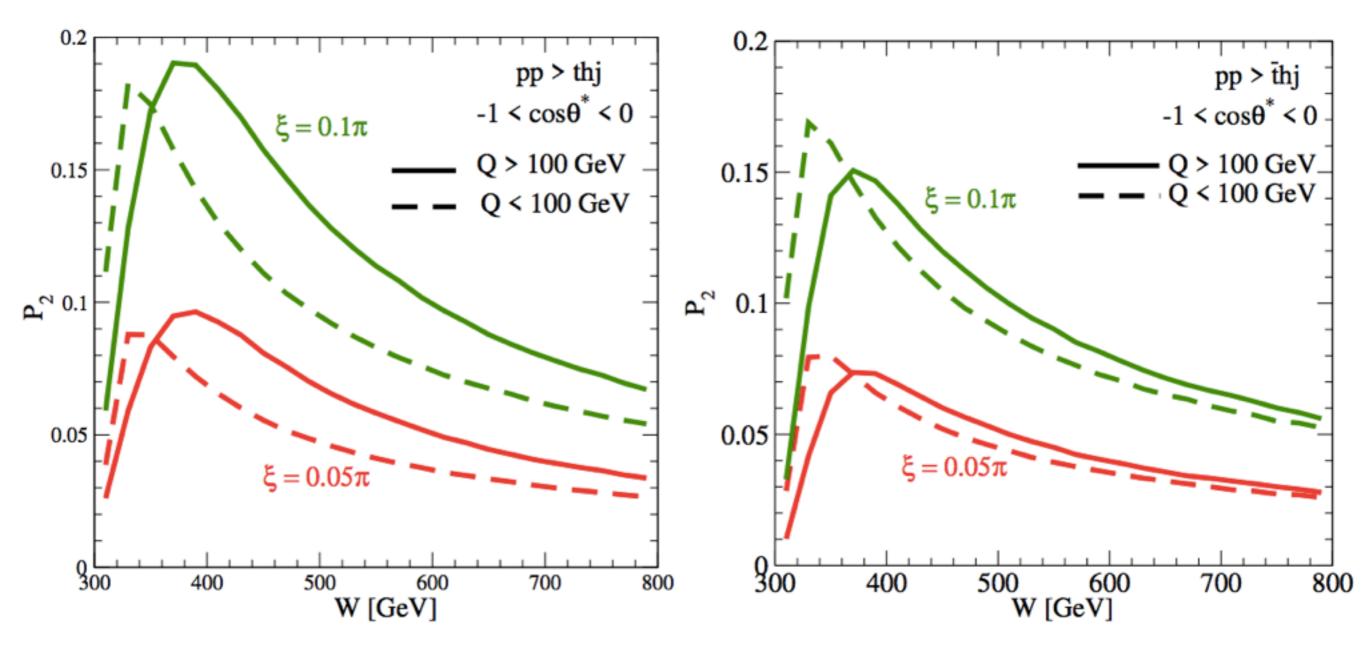


FIG. 15: P_2 v.s. W for $pp \to thj$ and $pp \to \bar{t}hj$ in the region $-1 < \cos\theta^* < 0$

Expected number of events @ HL-LHC

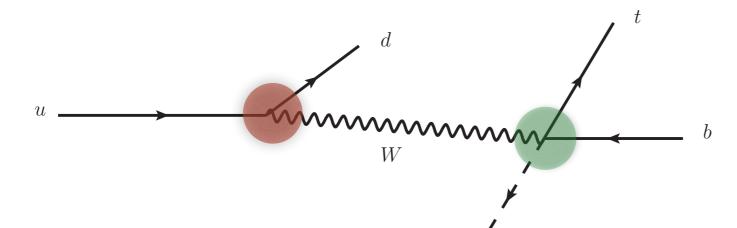
	\sqrt{s}	Number of events	Decay channel	Branching Ratio	Number of events	
	14 TeV	$@3ab^{-1}$				
$\sigma(th){+}\sigma(\bar{t}h)$	90 fb	270,000	$(b\ell u)(bar{b})$	0.13	34,000	\checkmark
			$(b\ell u)(\gamma\gamma,\ell\ell jj,\mu\mu,4\ell)$	0.0011	300	√ •
$\sigma(tar{t}h)$	613 fb	1,840,000	$(bl u)(bjj)(bar{b})$	0.17	310,000	
			$(bl u)^2(bar{b})$	0.028	52,000	
			$(bl\nu)(bjj)(\gamma\gamma,\ell\ell jj,\mu\mu,4\ell)$	0.0015	2,800	
			$(bl u)^2(\gamma\gamma,\ell\ell jj,\mu\mu,4\ell)$	0.00025	460	

- •t>blv mode for CP sensitivity (t vs. \overline{t})
- •h decay should not have neutrinos to determine $t(\bar{t})$ frame.

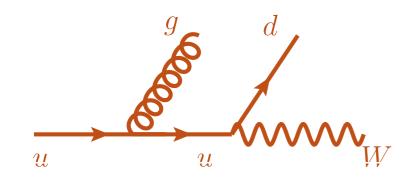
	Decay channel	Branching ratio		Decay channel	Branching Ratio	
<i>t</i> -	→ bjj	0.67	$h \rightarrow$	$b\overline{b}$	0.58	\checkmark
	$b\ell u(\ell=e,\mu)$	0.22		$\ell \bar\ell j j$	0.0025	
	bτν 🗸	0.11		$\gamma\gamma$	0.0023	0.0051√
				$\muar\mu$	0.00022	0.0051
				4ℓ	0.00012	

•For a few percent asymmetry measurement, h> bb is necessary

Radiative corrections



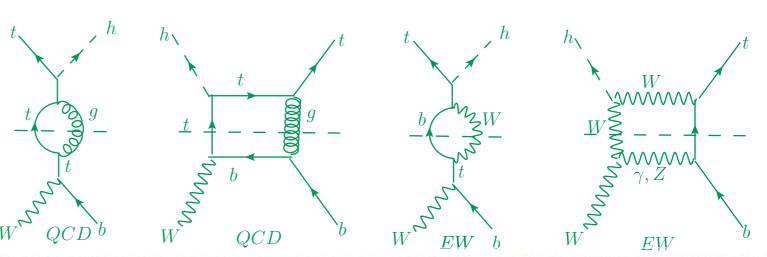
Color singlet (W) exchange factorizes QCD corrections into q > q'W emission and Wb>th production parts @NLO.



- •NLO corrections are the same as DIS and VBF process.
- •g-jet miss-tag washes out A_{ϕ} and $P^{A}_{1,3}$ but P_{2} is not affected.

- •b>bg makes W(m_{th}) softer.
- •g>bb correction depends on b PDF.
- •CP conserving T-odd asymmetry @1-loop.

00000 g



Summary

- Single top+Higgs production is an ideal probe of the top Yukawa coupling because the htt and hWW amplitudes interfere strongly.
- Azimuthal asymmetry between the u>dW⁺ emission and the W⁺b>th production planes probes the sign of CP violating phase.

$$A_{\phi} \sim \int_{0}^{\pi} (|M_{+}|^{2} + |M_{-}|^{2}) d\phi - \int_{-\pi}^{0} (|M_{+}|^{2} + |M_{-}|^{2}) d\phi \propto \sin \xi_{htt}$$

• Polarization can be measured by using the density matrix.

$$\rho_{\lambda\lambda'} = \frac{1}{\int (|M_+|^2 + |M_-|^2) d\Phi} \int \begin{pmatrix} |M_+|^2 & M_+M_-^* \\ M_-M_+^* & |M_-|^2 \end{pmatrix} d\Phi = \frac{1}{2} \left[\delta_{\lambda\lambda'} + \sum_{k=1}^3 P_k \sigma_{\lambda\lambda'}^k \right]$$

 Polarization perpendicular to the scattering plane measures the relative phase between the two helicity amplitudes

$$P_2 = \frac{-2\mathrm{Im}(M_+M_-^*)}{|M_+|^2 + |M_-|^2} \propto \sin\xi_{htt}$$

 We find significant asymmetry reaching Ap ~+8%(th),-10%(th), whereas P₂~ +18% (th), +15% (th) for xi=0.1pi. All the asymmetries change sign if xi is negative.