Charming top decays with flavor changing Higgs boson and $\tau\tau$ at LHC

Rishabh Jain, Chung Kao and Phillip Gutierrez

University of Oklahoma Particle Physics on Plains -2019

October 12, 2019

Outline:

1 SM and FCNH

2 General Two Higgs Doublet Model(gTHDM) and FCNH

3 Why gTHDM over THDM-I, THDM-II ...

4 $t \rightarrow ch^0$

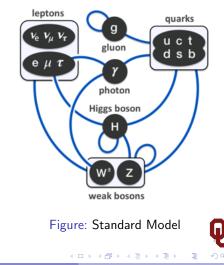
5 Conclusion and Future Work

3

< ∃⇒

SM and FCNH

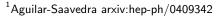
Rishabh Jain, Chung Kao and Phillip GutierreCharming top decays with flavor changing Hig


October 12, 2019 3 / 26

2

< □ > < □ > < □ > < □ > < □ >

The Standard Model


- In Standard model, we have six flavors of quarks and three flavors of charged leptons
- Higgs like boson's discovery in 2012, has completed the particle content, predicted by SM
- Higgs mechanism is not fully understood,hence room for new physics

SM and FCNH

FCNH in Standard Model and Limits on Flavor anomalies

- In SM Flavor Changing neutral currents like $t \rightarrow c(u)V^0, (V^0 = \gamma, Z, h^0)$ or $h^0 \rightarrow \tau \bar{\mu}$ are absent at tree level.
- At one loop level,SM predicts $\mathcal{B}(t \to qh, Z, \gamma) \simeq 10^{-14}$ from ¹ and $\mathcal{B}(h^0 \to f_i f_j)$ is highly suppressed at one loop level, where $i \neq j$.
- Current limits on some of the flavor anomalous searches are,
 - $\tau \rightarrow \mu \gamma \precsim 4.5 \times 10^{-8}$ at 90% C.L (Belle-collaboration)
 - $\tau \rightarrow e\gamma \lesssim 1.1 \times 10^{-8}$ at 90 % C.L (BaBar Collaboration)
 - $\tau \rightarrow 3\ell \preceq (1.5 2.7) \times 10^{-8}$ at 90% C.L (Belle collaboration)
 - $h \rightarrow \tau \mu \lesssim 2.5 \times 10^{-3}$ at 95 % C.L (CMS Collaboration)
 - $t \rightarrow ch^0 \lesssim 1.1 \times 10^{-3}$ at 95 % C.L (ATLAS collaboration)

General Two Higgs Doublet Model(gTHDM) and **FCNH**

Rishabh Jain, Chung Kao and Phillip Gutierr Charming top decays with flavor changing Hig

< (17) > < (17) > <

э

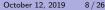
General Two Higgs Doublet Model(gTHDM)

• In gTHDM, we have two doublets ϕ_i (i = 1,2) with same hypercharge, and the Higgs potential is,²

$$V_{THDM} = m_{11}^2 \phi_1^{\dagger} \phi_1 + m_{22}^2 \phi_2^{\dagger} \phi_2 - \{m_{12}^2 \phi_1^{\dagger} \phi_2 + h.c\} + (1/2) \lambda_1 (\phi_1^{\dagger} \phi_1)^2 + (1/2) \lambda_2 (\phi_2^{\dagger} \phi_2)^2 + \lambda_3 (\phi_1^{\dagger} \phi_2) (\phi_2^{\dagger} \phi_1) + \lambda_4 (\phi_1^{\dagger} \phi_2) (\phi_2^{\dagger} \phi_1) + \{(1/2) \lambda_5 (\phi_1^{\dagger} \phi_2) + h.c\} + \{(\lambda_6 \phi_1^{\dagger} \phi_1 + \lambda_7 \phi_2^{\dagger} \phi_2) \phi_1^{\dagger} \phi_2 + h.c\}$$

• After Electroweak symmetry the two doublets in arbitrary basis ³

$$\phi_1 = \begin{pmatrix} \phi_1^+ \\ \frac{1}{\sqrt{2}} (\phi_1^0 + v_1 + iIm\phi_1^0) \end{pmatrix} \qquad \phi_2 = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (\phi_2^0 + v_2 + iIm\phi_2^0) \end{pmatrix}$$


where $v_{1,2}$ are VEV from two doublets such that $v_1^2 + v_2^2 = v^2$, v = 246.1 GeV ²J.Gunion & H.Haber [10.1103/PhysRevD.67.075019] ³G.C,Branco.et.al 10.1016/j.physrep.2012.02.002

General Two Higgs Doublet Model(THDM)

- When we apply a Z_2 symmetry i.e $\phi_1 \rightarrow \phi_1$ and $\phi_2 \rightarrow -\phi_2$, for this symmetry, $m_{12}^2, \lambda_{6,7} = 0$ and now the two doublets are no longer identical.⁴
- In this basis we can define $tan\beta \equiv v_2/v_1$.
- For our study we have broken the \mathbb{Z}_2 symmetry softly by considering a non zero, $m_{12}^2.$
- It is important to notethat tanβ is an not a physical parameter because I can choose a basis in which one doublet takes a vev and other one doesn't. This basis is called Higgs Basis.⁵

⁴G.C,Branco.t.al 10.1016/j.physrep.2012.02.002 ⁵H.Haber & D.O'Neil 10.1103/PhysRevD.74.059905

General Two Higgs Doublet Model

- β is also the rotation angle that diagonalizes the mass matrix of ϕ_i^+ and $Im(\phi_0)_i$.
- α rotation diagnalizes the mass matrix of ϕ_i^0 .

$$\phi_1 = \begin{pmatrix} c_{\beta}G^+ - s_{\beta}H^+ \\ \frac{1}{\sqrt{2}}(c_{\alpha}H^0 - s_{\alpha}h^0 + vc_{\beta} + ic_{\beta}G^0 - is_{\beta}A^0) \end{pmatrix}$$
$$\phi_2 = \begin{pmatrix} s_{\beta}G^+ + c_{\beta}H^+ \\ \frac{1}{\sqrt{2}}(s_{\alpha}H^0 + c_{\alpha}h^0 + vs_{\beta} + is_{\beta}G^0 + ic_{\beta}A^0) \end{pmatrix}$$

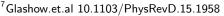
 $\label{eq:linear} J.Gunion \ \& \ H.Haber \ [10.1103/PhysRevD.67.075019]$ $\bullet \ H^{\pm},$ is a charged scalar, A^0 , CP odd h^0 and H^0 CP even scalars.

THDM and Corrections to Yukawa sector

• The mixing of the two doublets, induce corrections to Yukawa couplings. The effective yukawa lagrangian in General 2HDM is,

$$-\sqrt{2}\mathcal{L}_{Y} = \bar{F}\left\{\left[\kappa^{F}s_{\beta-\alpha} + \rho^{F}c_{\beta-\alpha}\right]h + \left[\kappa^{F}c_{\beta-\alpha} - \rho^{F}s_{\beta-\alpha}\right]H^{0}\right\}P_{R}F - \left\{i\mathrm{sgn}(Q_{F})\rho^{F}A^{0}\right\}P_{R}F + \mathrm{H.c.}$$

where $P_{L,R} \equiv (1 \mp \gamma_5)/2$, $c_{\beta-\alpha} = \cos(\beta - \alpha)$, $s_{\beta-\alpha} = \sin(\beta - \alpha)$, and α is the mixing angle between neutral Higgs scalars in the Type II (2HDM-II) notation⁶, κ matrices are diagonal and fixed by fermion masses to $\kappa^F = \sqrt{2}m_F/v$ with $v \simeq 246$ GeV, while ρ matrices are free and have both diagonal and off diagonal term.


⁶J. F. Gunion, H. E. Haber, G. L. Kane and S. Dawson, Front, Phys. 80, 1 (2000) or C

October 12, 2019

10 / 26

THDM and Flavor Changing Neutral Currents

- With ρ matrix containing non diagonal terms, we have tree level FCNC's possible in gTHDM
- This property of gTHDM was considered dangerous.
- So Pashchos-Glashow-Weinberg, proposed that by restricting one doublet to interact with certain kind fermion, we can remove these FCNH couplings at tree level(Natural flavor Conservation(NFC))⁷,⁸
- Following this we have Type I, Type II, Lepton Specific , Lepton Flipped models of 2HDM.
- These model only effect the yukawa sector, Higgs couplings to bosons are independent of these model variations.

⁸Paschos 10.1103/PhysRevD.15.1966

Rishabh Jain, Chung Kao and Phillip Gutierr(Charming top decays with flavor changing Hig

11 / 26

October 12, 2019

Why gTHDM over THDM-I, THDM-II ..

Rishabh Jain, Chung Kao and Phillip Gutierr(Charming top decays with flavor changing Hig

October 12, 2019

æ

イロト イヨト イヨト イヨト

12 / 26

Limitations of NFC THDM models

- NFC models cannot simultaneously explain the anomalies observed in the Tauonic B meson decays $(b \rightarrow c\tau\nu)$, namely R(D), R(D*) and $B_u \rightarrow \tau\nu$.
- Current experimental anomalies in the measurements of $R(D^*)$, R(D), $R(K^*)$ etc, points towards a flavor violating side of the Nature.

Anomaly	SM expectation	Observed
R(D)	0.299 ±0.011	0.407±0.039±0.024 (WA)
R(D*)	0.252 ± 0.003	$0.304 \pm 0.013 \pm 0.007$ (WA)
$B_u \to \tau \nu$	$[(0.84 \pm 0.11) \times 10^{-4}]^9$	$(1.67 \pm 0.3) \times 10^{-4}$

Table: Current Flavor Anomalies measurements, WA = World Average, From LHCb,Belle and BaBar Collaborations¹⁰. $B_u \rightarrow \tau \nu$ is taken from doi:10.1103/PhysRevD.86.054014

Limitations of NFC THDM models

• As shown by Crivellin.et.al ¹¹, THDM-II and THDM of type III with MFV can only explain $B_u \rightarrow \tau \nu$ and again by Iguru.et.al ¹², there results are shown below,

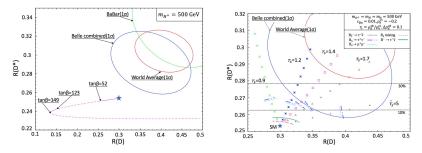
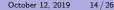



Figure: Predictions for R(D) and R(D*) from THDM-II (left) and gTHDM(right) [doi:10.1016/j.nuclphysb.2017.10.014]

¹¹doi:10.1103/PhysRevD.86.054014 ¹²[doi:10.1016/j.nuclphysb.2017.10.014]

$t \to ch^0$

Rishabh Jain, Chung Kao and Phillip GutierreCharming top decays with flavor changing Hig

October 12, 2019 15 / 26

- E

ヘロト 人間 とくほとくほど

Motivation

- Top mass
- Current Experimental Limits are 12 orders of magnitude higher than SM expectation
- FCNH coupling ρ_{tc} can also drive Electroweak Baryogenesis¹³.

 $t \rightarrow ch^0$

• Discovery will lead to definitive signature of new physics either at tree level or at loop level.

¹³Fuyuto.et.al doi:10.1016/j.physletb.2017.11.073

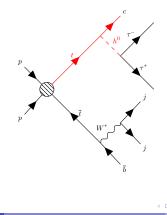
Translating Experimental Constraints

• The Branching Fraction for $t \rightarrow ch^0$ is given as, Using $m_t = 173.2$ GeV, $M_h = 125.1$ GeV and $m_c = 1.42$ GeV

$$\mathcal{B}_{t \to ch^0} = \frac{c_{\beta\alpha}^2 m_t}{32\pi\Gamma_t} \{ 0.48 |\tilde{\rho}_{tc}|^2 \} \times \lambda^{1/2} (1, x_c^2, x_h^2)$$
(1)

Where
$$\tilde{\rho}_{tc} = \sqrt{\frac{|\rho_{tc}|^2 + |\rho_{ct}|^2}{2}}$$
,
 $\lambda(x, y, z) = x^2 + y^2 + z^2 - 2xy - 2xz - 2yz$, $x_i = m_i/m_t$

• Current limits $\mathcal{B}_{t \to ch^0} \lesssim 1.1 \times 10^{-3}$ gives $\lambda_{tc} = \tilde{\rho_{tc}} c_{\beta-\alpha} \lesssim 0.064^{-14}$


¹⁴doi 10.1007/JHEP05(2019)123, ATLAS Collaboration

Parameters and Channel of study

• Our production channel is top pair production at LHC. With the following following decay modes,

 $t \rightarrow ch^0$

• $t \to ch^0 \to c\tau^+\tau^-$, Other top decays via $t \to bjj$ [Work in progress]

Channel of Study and Important Backgrounds

 $t \rightarrow ch^0$

• We are considering the two different final states here,

•
$$\tau^+ \to \ell^+ \nu_\ell \bar{\nu_\tau}, \tau^- \to \ell^- \bar{\nu_\ell} \nu_\tau$$

- $\tau^+ \to \ell^+ \nu_\ell \bar{\nu_\tau}, \ \tau^- \to j_\tau \nu_\tau$
- Where $j_{\tau} = \pi^{\pm}, \rho$ and a_1
- For this talk I am only considering the two leptonically decaying au's
- Important backgrounds are
 - *ttjj*
 - $t\bar{t}W^{\pm}$ and $t\bar{t}Z$
 - $b\bar{b}jjW^+W^-$,
 - $b\bar{b}jj\tau^+\tau^-$

Event Generation and Selection

- We have used MadGraph5 to generate parton level events and then use Pythia8 to mimic hadronization and showering effect, and later pass on to Delphes for detector modeling.
- We apply minimal cuts to get a stable cross section for event generation at tree-level and later use K-factor to scale them to NLO.
- After this we extract events from the samples by applying the following selection rules,
 - $P_T(b,j) \ge 20 \text{ GeV}$
 - $|\eta(b)| \leq 4.7$, $|\eta(j)| \leq 2.5$
 - $P_T(\ell) \ge 10$ GeV, and two OS leptons , $|\eta(\ell)| \le 2.5$
 - $E_T \ge 25 \text{ GeV}, \ (\ell\ell, jj, bj, bb, \ell j, \ell b) \ge 0.4$
 - $P_T(leading\ell) \ge 20 \text{ GeV}$
 - We also apply b veto. Remove all the event having more than one b with $P_T \geq 20~{\rm GeV}$ and $|\eta| < 4.7$
 - To reconstruct Higgs mass we apply collinear approximation to reconstruct τ momenta.

20 / 26

э

(4) (日本)

$t \to ch^0$

Event Selection

• Under collinear approximation¹⁵,

$$P_{\tau_i} = P_{\ell_i} / x_i$$

- We only select those event which satisfy $0 \le x_i \le 1$ Where i = 1,2.
- After applying all these selection rules, Background cross section at $\sqrt{s}=13~{\rm TeV}$

Process	Cross-section(fb)
$tar{t}jj$	711.324
$t\bar{t}W^{\pm}$	0.5516
$t\bar{t}Z$	0.362
$b\bar{b}jjW^+W^-$	1.404
$b ar{b} j j au^+ au^-$	2.052

October 12, 2019

21 / 26

$t \to ch^0$

Training Variables and BDT outcome

- We use the following variables training.
 - Invariant mass of two light jets $\mathsf{M}(j,j)$ and Invariant mass of b jet and two light jets $\mathsf{M}(b,j,j)$
 - Invariant Mass of two τ 's and Invariant mass of c and two τ 's. Using collinear approximation
 - $P_T(b, j, j, \ell_1, \ell_2)$ and E_T
 - Invariant mass of two leptons.
- After the selecting the events, we create two different samples for Signal by randomly selecting 80% events and train both of them with the total background sample.
- We also apply some Mass window cuts before training,
 - $40 \le M(j_1, j_2) \le 120 \text{GeV}$
 - $100 \le M(b, j_1, j_2) \le 246 \text{GeV}$
 - M(ℓ, ℓ) ≤ 80 GeV

22 / 26

Here we have used TMVA ¹⁶ for our BDT analysis,

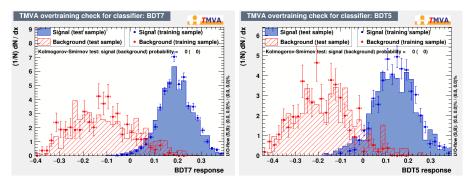
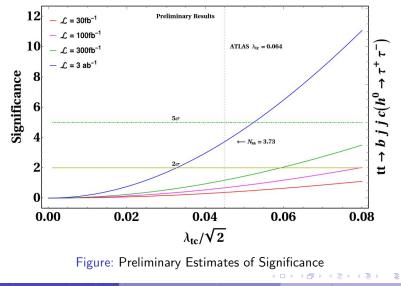


Figure: BDT discriminator from the two different samples


23 / 26

¹⁶TMVA,arXiv:physics/0703039

Rishabh Jain, Chung Kao and Phillip Gutierr(Charming top decays with flavor changing Hig

$t \rightarrow ch'$

Current Estimate on the Significance $\sqrt{s} = 13 \text{ TeV}$

Rishabh Jain, Chung Kao and Phillip Gutierr(Charming top decays with flavor changing Hig

October 12, 2019

24 / 26

Conclusion and Future Work

25 / 26

2

Rishabh Jain, Chung Kao and Phillip Gutierr(Charming top decays with flavor changing Hig

October 12, 2019

A D N A B N A B N A B N

- FCNC's presents an exciting new physics channel to probe. If detected, can improve our understanding of the flavor structure of the Nature.
- The $t \rightarrow ch^0$ also holds promising future. However the study we presented is limited for one τ decay modes. Including other decay modes for τ , can really improve the expectation for current and future hadron colliders.
- The $tc\phi$ coupling holds a very rich phenomenology, and In the future I would like work more on this, to find out what it can tell us about nature.

