

Nouvelle installation de cyclages thermiques au CSL

Wide Range Thermal cycling Facility (WRTF)

Benoît Marquet

Journées liquéfacteurs 2019

- Centre de recherche de l'Université de Liège, autofinancé via ses propres projets : Industrie / Régional / Fédéral / Européens / Agences spatiales
- 3 programmes : Instrumentation spatiale, Tests environnementaux, Partenariats technologiques
 - Design, développement, intégration de systèmes / sous-systèmes de charges utiles
 - Calibration (optique) d'instruments spatiaux, au sol et en vol
 - Qualification et tests environnementaux : vide, thermique (& cryogéniques),
 vibrations
 - Partenariats technologiques dans des domaines d'expertises pointus : microfabrication, additive manufacturing, surface engineering (coatings, ...)

Situation

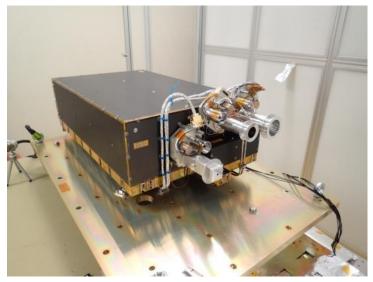
Liège (Belgique)
 Parc Scientifique du Sart Tilman

Personnel

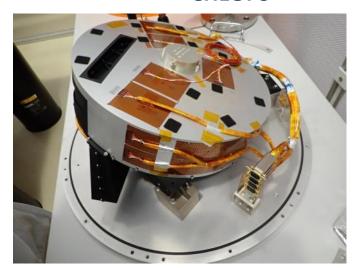
- ~90 employés
 - >50 ingénieurs/scientifiques
 - ~25 techniciens
 - ~15 personnel administratif
- <10 PhD's</p>

Clients/partenaires

- Agences spatiales : ESA, NASA, JAXA
- Industrie : Airbus, OHB, Thales
 Alenia Space, Leonardo,...
- Universités/Centres de recherche
- **—** ...



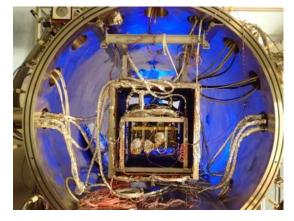
Quelques instruments


Sentinel-4 / UVN

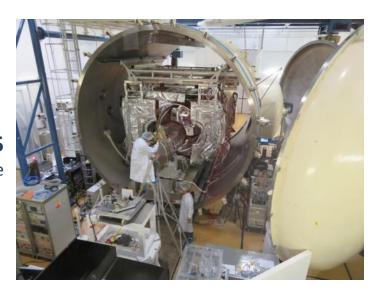
Solar Orbiter / EUI

CHEOPS


Sentinel-3 / OLCI



Les cuves à vide


Focal 3 \varnothing 3m / verticale

Focal 2 Ø2m / horizontale

Focal 5 ∅5m / horizontale

Focal 6.5 Ø6.5m / verticale

Description de l'installation helium

- Les liquéfacteurs/réfrigérateurs (2x 50l/h 300W@20K)
 - 1 Linde TCF 20 + 1 compresseur Kaeser + 1 dewar 500 l

1 Koch 1630 + 2 compresseurs RS + 1 dewar 250 l (non utilisé depuis 2009...)

Description de l'installation helium

1 boite de distribution + lignes de distribution SIV (faites "maison")

1 installation de récupération : baudruche / compresseur BAUER / "torpilles" (2.4 m³ @200 bars)

1 système de refroidissement eau/glycol en boucle fermée

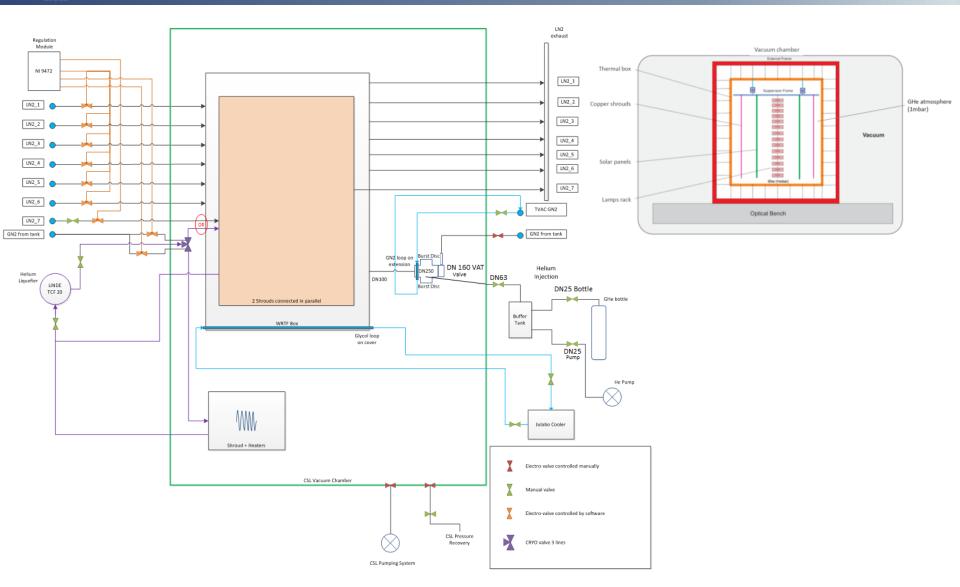
Cyclages en mode réfrigération

- Les tests cryos, dans un environnement < 20K, sont très souvent "one shot" → refroidissement / test / réchauffage
 - On ouvre progressivement la vanne HP pour alimenter en gaz froid (~12 K)
 - Le gaz se réchauffe et se détend dans le circuit (lignes + panneaux thermiques)
 - La pression dans la ligne est limitée à 3 bars (soupapes de sécurité)
 - On ré-injecte le gaz de retour dans la BP du liquéfacteur à différents endroits en fonction de la température de retour
 - En amont de l'échangeur LN2 si T_{retour} de 300 \rightarrow ~30-40 K
 - En amont de l'échangeur suivant (30K) si T_{retour} < ~30-40 K
- Le réchauffage se fait en fermant progressivement l'alimentation en gaz puis en "flushant" au gaz chaud (compresseur uniquement) et éventuellement à l'aide le lampes IR dans la cuve
- Toutes les opérations sont manuelles et dépendent fortement du setup de test et de la séquence à réaliser → très compliqué pour un grand nombre de cycles

Wide Range Thermal cycling Facility

• JUICE (mission vers Jupiter) : cyclages des panneaux solaires

- Températures plus basses (38 K) → Nécessité du GHe
- Large gamme de températures : 38 433 K
- Nombres de cycles important : ~200 !
 - → Automatisation et réduction du temps de cycle



Développement de la facilité WRTF

- Une cuve dans une cuve
 - La cuve intérieure est pressurisée à ~1 mbar de GHe pour augmenter le transfert thermique grâce à la conduction dans le gaz
 - La cuve est refroidie au LN2 dans les cas froid pour diminuer les charges thermiques sur les panneaux → elle est allégée au maximum (1 mm d'épaisseur)
 - La cuve à vide (extérieure) sert à l'isolation
 - Maximum 3 mbar de ΔP entre l'extérieur et l'intérieur \rightarrow Protection par burst disks (14 mbar)
- Fonctionnement continu et stabilisé du liquéfacteur en mode réfrigération grâce à un bypass et une vanne 3-voies

WRTF assemblage et installation

Cuve intérieure (BOX – 6 x 2.5 x 4 m) en inox (1mm d'épaisseur) avec circuit LN2

Système pompage/remplissage + burst disks (14 mbars)


Vanne 3-voies pneumatique "Faite maison"

WRTF assemblage et installation

Mur de lampes

Installation
Panneaux + shrouds
+ lampes

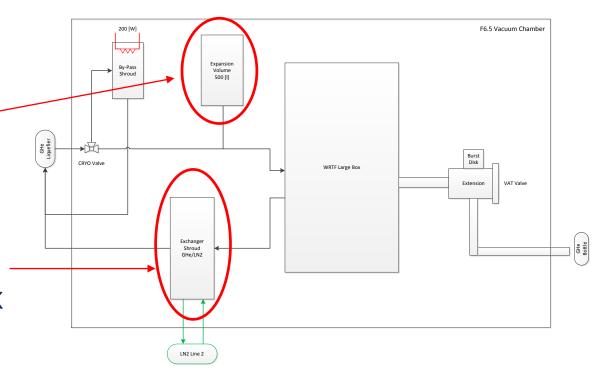
Setup de test complet :

Box isolée (MLI) et shrouds + pannaux solaires + lampes dans la Box

200 cycles réalisés sur panneaux JUICE

- Fonctionnement continu depuis 3 mois (sans opération)
- Pas de problème à déclarer
- Cycles réalisés en 7-8 h (spec < 12 h)

Extension de la plage de température 🗱



WRTF a été conçue pour réaliser les cycles en 2 étapes

- Cycles "chauds" à l'azote : 93 K 433 K
- Cycles "froids" à l'hélium : 38 K 168 K
 - → Limite max due au pic de pression dans les lignes lors de la réinjection de l'hélium froid (11 K) dans les shrouds chauds lorsqu'on démarre le cas froid

Augmentation de la gamme

- Ajout d'un volume tampon de 500 l pour amortir le pic de pression
- Ajout d'un échangeur
 LN2/GHe pour refroidir
 l'hélium en sortie à 80 K
 avant retour vers le
 liquéfacteur

Extension de la plage de température LIÈGE

- Augmentation de la limite chaude en fonctionnement GHe à 50°C
 - Validation :
 - Cycles réalisés sans interventions sur le liquéfacteur entre 35 K et 323 K! (température des shrouds)
 - Test FNFO:
 - 10 cycles entre 68 K et 323 K sur panneaux solaires
 - Temps de cycle : 12.5 h/cycle

Echangeur LN2/GHe

Volume tampon de 500 litres

Travaux à venir

- Augmentation de la capacité de stockage impur : torpilles + bouteilles B50
- Groupe de refroidissement supplémentaire (redondance)
- Grosse maintenance et remise en service du KOCH 1630 (à l'arrêt depuis 2009)
 - Compresseurs
 - Réparation de fuites visibles (et non visibles? → leak test)
 - Remplacement des charbons actifs dans l'adsorbeur d'huile
 - Vidange / remise à niveau d'huile ? Vidange nécessaire ?
 - Pressurisation et leak test

Liquéfacteur

- Démontage des pistons, remplacement des courroies, des roulements de bielles, des feutres et O-rings, réglage (remplacement?) des soupapes, ...
- Démontage, vérification, remplacement de tous les détendeurs puis réglages
- •
- Pompage, purge, et nettoyage du circuit → circulation avec ADL LN2 adsorber

Appel à l'équipe

- Contacts pour achat pièces de rechange ?
- Support technique ?
- Expérience / Lessons learned ?

