

JOURNÉES DES LIQUÉFACTEURS ET RÉFRIGÉRATEURS HÉLIUM

CERN 16 – 18 SEPTEMBRE 2019

ÉVOLUTIONS DU CRYOPLANT SM18

Nicolas GUILLOTIN (CERN) on behalf of TE-CRG

Contributions majeures de : Th. BARBE, F. DHALLA, J-P. LAMBOY, R. LAMY, J. MOULEYRE, A. PERIN, M. PEZZETTI

	 	1
Ŋ	INTRODUCTION & CONTEXT	
7		-

II SM18 SIMPLIFIED CRYO DEVICES : BEFORE & AFTER UPGRADE

III KEY FIGURES

IV PROCESS & CONTROL UPGRADES

SM18 : CERN main facility for testing SC accelerator magnets and SC RF cavities

SM18 cryo infrastructure is being significantly upgraded (starting in 2019) to meet requirements for :

- LHC High Luminosity project (HL LHC)
- R&D program for SC magnets
- RF equipment until 2023 and beyond

RF cavities & Cryomodules

SOME OF THE SYSTEMS CURRENTLY IN OPERATION IN SM18

- **5 vertical magnet cryostats :** HFM, CLUSTER D, SIEGTAL, LONG, DIODES (80K, 4.5 K, 1.9 K)
- 10 Horizontal test benches for magnets (80K, 4.5 K, 1.9 K)
- 1 test bench for SC Link : (30 - 4.5 K, 2 ~ 15g/s)
- 4 test benches for RF cavities : V3, V4, V5, V6 (4.5 K, 1.9 K)
- 2 test benches for Cryomodules : M7, M9 (80K, 4.5 K, 1.9 K)
- 1 independent test Bench : Eu HIT GReC (10 - 4.5K)

ed box Horizontal magnet test benches

SOME DEVICE OF THE CRYOGENIC INFRASTRUCTURE CURRENTLY IN OPERATION

6kW Linde Cold Box

27g/s (~700L/h) @4.5K

Purification units

3 x 130 Nm3/h Burckardt recovery compressors + 2 Purifiers with 200 Nm³/h total at 180 bars + 5 balloons

2 x Very Low Pressure unit (called WPU)

> Values per WPU unit : 6 g/s @ 10 mbar 12 g/s @ 20 mbar 18 g/s @ 30 mbar (max)

Cool down warm up unit (CWU)

2 x CWU 80g/s – 2 x 120kW @80K

With 3 Kaesers compressors

- Crab RF cavities
- Standalone magnets
- Dipole magnets :

LHC \Rightarrow long 8.3 Tesla Dipole magnets

14.3 m long 8.3T NbTi supercond. Main Bending dipole (MB),Contain 2 beam channels in a common structure,Produce the magnetic field to deflect 7 TeV protons along a circular trajectory

HiLumi LHC \Rightarrow short 11 Tesla Dipole magnets

Upgrade of the LHC includes additional collimators in the LHC lattice.

The longitudinal space for the collimators will be obtained by replacing some LHC main dipoles with shorter but stronger dipoles,

leading to development of 5.5 m long 11T Nb3Sn dipole (MBH)

Superconducting link (Cables & current leads) the triplets of the High Luminosity LHC", A. Ballarino (CERN) On going Power converters New SC lines for the feeding of magnets : Room temperature area Power converters in surface and transfer of the cables **DFH cryostat** current from the surface to the tunnel will bemade via SC links Service tunnel SC links contain tens of cables feeding different circuits and transferring more than 150 kA Transverse tunnel Interaction **DFX cryostat** Q2a Q1 Point SCLink MgB2 cables and high temperature SC Triplets insertion syste Inner Triplet magnets project Nb3Sn technology - peak field of 11.4 T Busbar 2 outer quadrupoles, Q1 & Q3 + central one divided into 2 identical magnets, Q3 Q2b Q2a D1 DFX CP Q1 Q2a and Q2b

HL LHC String will be a new test stand to validate the collective behaviour of a structure including IT magnets

"HL-LHC IT STRING TEST", M. Bajko, LHC Performance Workshop 2018 Chamonix

"Conceptual study of the cryostats for the cold powering system for

I INTRODUCTION & CONTEXT

Ш	SM18 SIMPLIFIED CRYO DEVICES : BEFORE & AFTER UPGRADE	

III KEY FIGURES

IV PROCESS & CONTROL UPGRADES

SCHEMATIC LAYOUT OF THE SM18 CRYO INFRASTRUCTURE AFTER UPGRADE

SM18 NEW COLD BOX & MAYEKAWA COMPRESSOR

Mechanical Integration, Elec & Control System held at Linde Kryotechnik AG

Cold Box installed 2019 MAY, 15

Mayekawa CP reception March, 26

Mayekawa in SH18

II SM18 SIMPLIFIED CRYO DEVICES : BEFORE & AFTER UPGRADE

IV PROCESS & CONTROL UPGRADES

Sytem	Characteristics
EXISTING 6kW CB – "LINDE A"	27g/s (~700L/h) @4.5K
NEW Linde CB – "LINDE B"	35g/s (~1000L/h) @4.5K
Process compression station	3 Stal He compressors (350 g/s @19 bar), 1.6 MW elec. power + ORS + new MAYEKAWA compressor (main drive motor of 1.4 MW)
Very Low Pressure Pumping (WPU)	2 warm pumping units, each one : 6 g/s @ 10 mbar 12 g/s @ 20 mbar 18 g/s @ 30 mbar (max) To each WPU is dedicated a very low pressure heater of 32 kW (20g/s)
Pre-cooling to 80K	2 x CWU (80g/s - 2 x 120kW @80K) - With 3 Kaesers compressors
GHe Purification	5 x 80 m ³ Balloons at 1 bar (3 Burckardt recovery compressors + 2 Purifiers 200 Nm ³ /h at 180 bars)
Pure GHe storage	8 x 75m3 @18 bars
LHe storage	1 x 25 m ³ LHe storage at 1.6 bar (+ 1x 10 m ³ mobile)
LN2 storage	50'000L Dewar

LHe CONSUMPTION

SM18 TYPICAL CURRENT PLANNING : LHe DISTRIBUTION FOR THE TESTS

	JUNE JULY																																									
		т	w	т	F	M	т	w	т	F	м	т	w	т	F	м	т	w	т	F	м	т	w	T F	n	ти	· \	∧ т	F	N	Т	V	∨ т	F	M	I T	v	∧ т	F	N	и т	w
		04	05	06	07	10	11	12	13	14	17	18	19	20	21	24	25	26	27	28	01	02	03	04	05	08	09	10	11	12	15	16	17	18 :	19 2	22	23	24	25	26	29	30 31
	HFM			—		SP10	9 4K					-			_	SP1	07 4K								s	6P107	4K				_	_	_	_	M	QXF	<u>\$6</u>			4	_	_
	Diode						TRIM	I LEAD)S			-					—				FEAT	HER		_		_			_		_	_			+	—	—	—	—	+		_
	Siegtal																							D	odeo	apol	e 600	A						_	+	—	—	—	—	+		
	Cluster D			—		_			мсв	XFP 2	2K																	N	IQXF	S4					+	—	—	—	—	+	_	_
MAGNETS	Cluster A					CC T	nerm	al cyc	les	(A2)																									+	—	—			+		
	Cluster B	<u> </u>		<u> </u>							PIEU	IVRE	(B2)												_	_					_	_					<u> </u>	<u> </u>	<u> </u>			
	Cluster C																														_	(C2) 1	1T		1	<u>1T M</u>	внв	LMBH	<mark> BOO</mark> 2	2	
	Cluster E																			Test	s géo	mètro	es	(1	2)																	
	Cluster F						PIEU	VRE	curre	ent le	eads	20kA	@4K	[
	MAGNET Consumption [g/s]	0	0	10	14	14	23	15	15	22	20	20	20	20	20	14	14	14	18	18	11	11	11	11	15	22	22	22	32	18	14	14	22	22	8	18	18	18	18	18	8	8 8
	M7																																		T					T		
	M9																																									
	V3													High	h Grad	lient				2K																						
PE	V4					Crab	cav -	Tune	r			4.2	(\top		
	V5								HIE IS	SOLD	E cav	vity	ty 2K																											\square		
	V6																			LH		01		1	2K																	
	RF Consumption [g/s]	0	0	8	6	6	6	6	11	11	11	11	11	16	16	5	5	5	10	10	5	5	5	5	5	5	5	5	5	5	5	5	5	0	0 (0	0	0	0	0	0	0 0
MAG+RF	Global consumption [g/s]	0	0	18	20		29	21	26	33	31	31	31	36	36	10	9.9	19	28	28	16	16	16	<mark>16</mark> 2	20	27 2	27 2	27 3	7 2	23 1	.9 1	.9 2	27 2	2 8	3 1	.8 1	.8 1	18 1	.8 1	.8	8	88
	CRYO STATUS																																									
	Process compressors																																									
	Cold Box									7																																
CRYO	Dewar																																									
	Recovery compressors																																									
	Purifiers																																									
	Cryo OK																																									

A priority management is currently essential for the cool down organisation (capacity limited to 27 g/s)

I INTRODUCTION & CONTEXT

II SM18 SIMPLIFIED CRYO DEVICES : BEFORE & AFTER UPGRADE

III KEY FIGURES

IV PROCESS & CONTROL UPGRADES
•

AUTOMATED AT CONTROL FOR Nb3Sn 11Tesla MAGNETS IN THE 80 – 300K RANGE

1 - Alpha

Max DeltaT

COOL DOWN & WARM UP PROCESS IMPROVEMENT

Nb3Sn magnet warm up using mainly 300K gas and same process than NbTi magnet

Controlled warm up using mixing 300 and 80 K gas to respect $\Delta T < 30$ K on critical points

The ∆T control has been implemented in automated process by TE-CRG and successfully applied for the MBHB-02 11Tesla series magnet early July 2019

INTRODUCTION & CONTEXT

II SM18 SIMPLIFIED CRYO DEVICES : BEFORE & AFTER UPGRADE

III KEY FIGURES

IV PROCESS & CONTROL UPGRADES

SUMMARY

The upgrade of the cryogenic system at the SM18 gives the possibility to :

- Increase the global LHe capacity for the Magnets and RF cavity tests
- Ease Quenches recovery for Magnet tests

Allow one CB/Compressor system to be under maintenance while the LHe supply to Dewar can continue
⇒ Operation flexibility & Redudancy in case of major issue

