Contribution ID: 59

Towards high-resolution spectroscopy of N₂⁺

High resolution spectroscopy of molecular nitrogen ions is a prime candidate to measure potential temporal changes in the proton-to-electron mass ratio, μ [1].

Ion traps facilitate a high degree of localisation in a highly isolated and stable environment. In addition, the shared motional modes of ions co-trapped in the same potential enable techniques such as sympathetic cooling [2] and quantum logic spectroscopy [3]. These techniques allow cooling and read-out of the internal state of a molecular ion, provided a suitable auxiliary ion can be found.

In this experiment, a single ${}^{14}N_2^+$ ion will be co-trapped, in a linear Paul trap, with a ${}^{40}Ca^+$ ion which will act as a frequency reference and be used for the sympathetic cooling and state detection of the nitrogen ion. A vibrational Raman transition in the electronic ground state of ${}^{14}N_2^+$ will be compared to a quadrupole transition in the ${}^{40}Ca^+$ ion. After excitation, the state of the ${}^{14}N_2^+$ ion will be transferred to the ${}^{40}Ca^+$ ion via the shared motion of the ions in a quantum logic spectroscopy scheme.

Prerequisite to this are the preparation of ${}^{14}N_2^+$ into a specific rovibronic state and its non-destructive state detection. Recently, a 2+1'resonance-enhanced multiphoton ionisation (REMPI) scheme was developed, using the $a^1\Sigma_g(\nu=6) \leftarrow X^1\Sigma_g^+(\nu=0)$ band in ${}^{14}N_2$ for the resonant excitation. This scheme was demonstrated to prepare ${}^{14}N_2^+$ in the rovibronic ground state with high purity [4].

References

[1] M. Kajita et al., Physical Review A 89, 032509 (2014).

[2] J. B. Wübbena et al., Physical Review A 85, 043412 (2012).

[3] P. O. Schmidt et al., Science 309, 5735 (2005).

[4] A. Gardner et al., Scientific Reports 9, 506 (2019).

Keywords: high resolution spectroscopy, REMPI, molecular ions

Primary authors: Ms BLACKBURN, Laura (University of Sussex); Dr GARDNER, Amy (University of Sussex); Prof. KELLER, Matthias (University of Sussex)

Presenter: Ms BLACKBURN, Laura (University of Sussex)

Session Classification: Poster Session

Track Classification: Atomic Clocks