

An ytterbium ion clock and its role in the search for dark matter

Dr. Charles Baynham ECCTI, CERN (13th-17th January 2020)

Contents

Optical atomic clocks

ion

A search for dark matter

 $Q=\frac{v_0}{\Delta v}$

• $I = \frac{1}{2}$ so possibility of $\Delta m_F = 0 \rightarrow 0$ transition

Why ¹⁷¹Yb+ as a clock?

NPL® QMI 📶

Components of an atomic clock

Local oscillator

Stable reference

Measurement and readout

Frequency-tuned laser

Forbidden atomic transition

Optical frequency comb

¹⁷¹Yb⁺ term scheme

Endcap-style RF Paul trap

 $\begin{aligned} &d=1 \text{ mm} \\ &\Omega_{RF} \approx 2\pi \times 13 \text{ MHz} \\ &\omega_{radial} \approx 2\pi \times 0.5 \text{ MHz} \end{aligned}$

Symmetric RF path avoids uncompensable stray fields at Ω_{RF}

No dielectric near ion to avoid thermal heating (for controlled BBR environment)

Total trap-related systematic contributions $< 0.5 \times 10^{-18}$

DOI: 10.1103/PhysRevA.80.022502

Optical cavities

Optical cavities

- Fractional thermal noise (fundamental limit) estimated at 6×10^{-17}
- Comparison against PTB cryogenic cavity shows total noise floor of 7×10^{-17} in this room temperature system
- $\approx \frac{1}{25} \times \text{diameter of a proton}$

Why ¹⁷¹Yb+ as a clock?

$$Q = \frac{v_0}{\Delta v}$$

- Presence of two accessible metastable states including long-lived octupole transition
- Low sensitivity to external fields
- $I = \frac{1}{2}$ so possibility of $\Delta m_F = 0 \rightarrow 0$ transition

¹⁷¹Yb⁺ term scheme

Why Yb+ for physics?

---- 4f¹³6s² ²F_{5/2}

Variation of constants

$$u_{\mathrm{Yb}^{^{+}}\ \mathrm{E2}}/
u_{\mathrm{Cs}}$$

$$\frac{\dot{\alpha}}{\alpha}$$
 < -0.7(2.1) × 10⁻¹⁷ year⁻¹

$$\frac{\dot{\mu}}{\mu}$$
 < 0.2(1.1) × 10⁻¹⁶ year⁻¹

Lorentz invariance

Large relativistic corrections of the ²F state create sensitivity to LLI violation

Dark matter – the motivation

- 6x more DM than SM matter
- ...but WIMPs proving elusive
- Alternative explanations include light dark matter:

$$m_{\phi} \ll 1 \mathrm{eV}$$

 Self interactions could lead to macroscopic structure: topological defects (TDs)

$$\alpha^{\text{eff}} = \alpha \left(1 - \frac{\phi^2}{\Lambda_{\gamma}^2} \right)^{-1}$$

Detectable by clocks!

What would we see?

d

A network of clocks

- Use a network of clocks joining three institutes with 6 optical clocks
- Optical fibre links2215kmActive path-length stabilisation
- Rejects noise on a single clock
- Low correlations between noise sources

DOI: 10.1038/ncomms12443

Limits to transient variation in α

Limits to transient topological defects

- Add some assumptions:
 - All dark matter is in the form of topological defects
 - Locally, dark matter has a density of

$$\rho_{DM} = 0.3 \text{ GeV cm}^{-3}$$

- Pick a model:
 - Scalar field ϕ with quadratic interactions with SM, energy scale Λ_{α}
- => link between size of defects, frequency of defects and energy scale of interaction with SM matter

Limits to transient topological defects

arXiv: 1907.02661

Thanks for listening!

And thanks to:

Alexandra Tofful Rachel Godun Anne Curtis Billy Robertson

FUNDED BY BEIS

This work was supported by the UK government's Department for Business, Energy and Industrial Strategy (BEIS)

