Cavity-enhanced Ion-Ion Remote Entanglement

Shaobo Gao, William Hughes, Joseph Goodwin, David Lucas
University of Oxford
• Ion-ion remote entanglement

• Cavity-enhanced Raman transition

• Noise process and temporal property of photons

• Result:
 • Optimising cavity parameters
 • Technical challenge
Ion-ion remote entanglement

- Quantum entanglement is the central resource behind quantum information science
Ion-ion remote entanglement

- Quantum entanglement is the central resource behind quantum information science

- Ion trap is advantageous for quantum information processing

- Local qubit entanglement is confronted with practical limits to the number of qubits that can be reliably controlled
Two main approach to achieve remote entanglement:

1. Move qubits between modules[1]

Ion-ion remote entanglement

Two main approach to achieve remote entanglement:
1. Move qubits between modules[1]
2. Entanglement mediated by photons

Ion-ion remote entanglement

Two main approaches to achieve remote entanglement:
1. Move qubits between modules
2. Entanglement mediated by photons
 - Low entangling rate (5Hz) when photons are collected by lens. [2] (increased to 182 Hz recently[3])

Two main approaches to achieve remote entanglement:
1. Move qubits between modules [1]
2. Entanglement mediated by photons
 - Low entangling rate (5Hz) when photons are collected by lens. [2]
 (increased to 182 Hz recently [3])
 - Photon collected by cavity
 a) Direct excitation
 b) Raman transition

Cavity-enhanced Raman transition

Direct excitation

\[|0\rangle \xrightarrow{\sigma} |1\rangle \]
\[|0\rangle \xrightarrow{\pi} |1\rangle \]
\[\pi \text{ pulse} \]

Cavity-enhanced Raman transition

\[|0\rangle \xrightarrow{\sigma} |1\rangle \]
\[|1\rangle \xrightarrow{\pi} |0\rangle \]
\[\pi \rightarrow V \]
\[\sigma \rightarrow H \]
Cavity-enhanced Raman transition

Direct excitation

\[|0\rangle \rightarrow |\pi\rangle \rightarrow |\sigma\rangle \rightarrow |0\rangle \]

Cavity-enhanced Raman transition

\[|1\rangle \rightarrow |\pi\rangle \rightarrow |\sigma\rangle \rightarrow |1\rangle \]

\[\pi \text{ pulse} \]

\[\pi \text{ pulse} \]

\[\pi \rightarrow V \]

\[\sigma \rightarrow H \]
Cavity-enhanced Raman transition

Direct excitation

\[\pi \text{ pulse} \]
\[|1\rangle \rightarrow |0\rangle \]

Cavity-enhanced Raman transition

\[\pi \rightarrow V \]
\[\sigma \rightarrow H \]

\[|1\rangle \rightarrow |0\rangle \]
Cavity-enhanced Raman transition

Hamiltonian

\[H_{\text{int}} = \hbar g_H e^{i \Delta_H} \sigma_0 a_H^+ + \hbar \frac{\Omega_H}{2} e^{-i \Delta_H} \sigma_{u1} e + \hbar g_V e^{i \Delta_V} \sigma_1 a_V^+ + \hbar \frac{\Omega_V}{2} e^{-i \Delta_V} \sigma_{u1} e + c.c. \]

Advantage:

- Flexible choice of frequency,
- Continuous driving laser,
- Controllable photon wave packet.
Noise process:

\[|u\rangle \quad \rightarrow \quad |1\rangle \quad \rightarrow \quad |0\rangle \]

\[|e\rangle \quad \rightarrow \quad |\pi\rangle \quad \rightarrow \quad |\sigma\rangle \]
Noise process:

- Loss channel:

 \[
 \text{infidelity} \approx \frac{2\kappa^2}{\Delta_H^2 + \Delta_V^2}
 \]
Noise process:
• Loss channel:
 \[\text{infidelity} \approx \frac{2\kappa^2}{\Delta_H^2 + \Delta_V^2} \]
• Spontaneous decay \(\Gamma_{eu} \)
Noise process and temporal property of photons

Noise process:
- Loss channel:
 \[
 \text{infidelity} \approx \frac{2\kappa^2}{\Delta_H^2 + \Delta_V^2}
 \]
- Spontaneous decay Γ_{eu}
Noise process:
• Loss channel:
 \[\text{infidelity} \approx \frac{2\kappa^2}{\Delta_H^2 + \Delta_V^2} \]
• Spontaneous decay \(\Gamma_{eu} \)
Noise process:
• Loss channel:
 \[
 \text{infidelity} \approx \frac{2\kappa^2}{\Delta_H^2 + \Delta_V^2}
 \]
• Spontaneous decay \(\Gamma_{eu} \)
Noise process:

- Loss channel:
 \[\text{infidelity} \approx \frac{2\kappa^2}{\Delta_H^2 + \Delta_V^2} \]
- Spontaneous decay \(\Gamma_{eu} \)

Two time correlation function:

\[f(t, t') = \langle \hat{E}^+(t) \hat{E}(t') \rangle \]
Noise process:
- Loss channel:
 \[\text{infidelity} \approx \frac{2\kappa^2}{\Delta_H^2 + \Delta_V^2} \]
- Spontaneous decay \(\Gamma_{eu} \)

Two time correlation function:
\[f(t, t') = \langle \hat{E}^+(t) \hat{E}(t') \rangle \]
Temporal mode mixing for double Λ system:

\[
\tilde{f}(t, t') = \begin{bmatrix}
\langle \hat{E}_H^+(t) \hat{E}_H(t') \rangle & \langle \hat{E}_H^+(t) \hat{E}_V(t') \rangle \\
\langle \hat{E}_V^+(t) \hat{E}_H(t') \rangle & \langle \hat{E}_V^+(t) \hat{E}_V(t') \rangle
\end{bmatrix}
\]
Noise process and temporal property of photons

Temporal mode mixing for double Λ system:

\[
\vec{f}(t, t') = \begin{bmatrix}
\langle \hat{E}_H^+(t) \hat{E}_H(t') \rangle & \langle \hat{E}_H^+(t) \hat{E}_V(t') \rangle \\
\langle \hat{E}_V^+(t) \hat{E}_H(t') \rangle & \langle \hat{E}_V^+(t) \hat{E}_V(t') \rangle
\end{bmatrix}
\]

\[
\lambda_0 = 0.94, \quad \lambda_1 = 0.035, \quad \lambda_2 = 0.011, \quad \lambda_3 = 0.0047
\]

\[
\sigma, \quad \pi
\]

|e⟩ → |u⟩ → |1⟩

|0⟩ → |u⟩ → |e⟩
In practise, fidelity and rate are dependent complicatedly on:
Cavity geometries, excitation lasers, B, detectors. Fabrication precision...
In practise, fidelity and rate are dependent complicatedly on:
Cavity geometries, excitation lasers, B, detectors. Fabrication precision...

• Optimising transmission, concentricity, and detection window

$L = 400\mu m, D_{\text{mirror}} = 100\mu m, loss = 10\text{ ppm}, B = 100G, misalignment = 700\text{ nm}, \tau_{\text{prep}} = 0.5\mu s, \eta = 0.5$
In practise, fidelity and rate are dependent complicatedly on:
 - Cavity geometries, excitation lasers, B, detectors, Fabrication precision...
 - Optimising transmission, concentricity, and detection window

\[L = 400\mu m, D_{mirror} = 100\mu m, loss = 10ppm, B = 100G, misalignment = 700nm, \tau_{prep} = 0.5\mu s, \eta = 0.5 \]
Technical challenges

• Best ion-ion entanglement performance with fabrication errors.
Summary and outlook

Summary

• A solver to predict and optimise ion-ion remote entanglement regarding temporal mixing and Loss channel
• >100KHz Bell state rate and >98% fidelity can be achieved by reasonable fabrication errors

Outlook

• Take birefringence into account
• Construct an analytical description
Thank you