ECCTI – CERN/Switzerland – 2020-01-16

High precision tests of Proton-Antiproton symmetry: Towards a 100 p.p.t. antiproton g-factor measurement

BASE collaboration

Leibniz Universität Hannover

- Introduction
 - Measurement principle
 - The BASE apparatus
- State of the Art
 - The Triple Trap Method (TTM)
 - Limitations
- Path towards 100 p.p.t. precision
 - Hardware upgrades
 - Dispersive spinflip detection

 $\overrightarrow{\mu_S} = g \frac{q}{2m} \vec{S}$

 $\Delta E = g \frac{q\hbar}{2m} B_z$

 $\omega_L = g \frac{q}{2m} B_z$

 $\omega_L = g \frac{q}{2m} B_z$

 $\omega_C = \frac{1}{m} B_z$

1. Determination of ω_{C}

Measure axial frequency and mod. cyclotron sidebands

Use invariance theorem to determine free cyclotron frequency

$$\nu_C^2 = \nu_+^2 + \nu_z^2 + \nu_-^2$$

2. Determination of ω_{L}

Couple spinstate to axial frequency by superimposing a magnetic bottle $(B_2 \approx 300\ 000\ T\ m^{-2})$

$$\Delta\omega_{z} = \frac{\hbar\omega_{+}}{m\omega_{z}}\frac{B_{2}}{B_{0}}\left(\left(n_{+} + \frac{1}{2}\right) + \frac{\omega_{-}}{\omega_{+}}\left(n_{-} + \frac{1}{2}\right) + m_{s}\frac{g}{2}\right)$$

 $\begin{array}{l} \Delta \nu_{+} \approx 62 \ mHz \\ \Delta \nu_{-} \approx 0.04 \ mHz \\ \Delta \nu_{S} \approx 172 \ mHz \end{array}$

2. Determination of ω_{L}

Couple spinstate to axial frequency by superimposing a magnetic bottle $(B_2 \approx 300\ 000\ T\ m^{-2})$

$$\Delta\omega_z = \frac{\hbar\omega_+}{m\omega_z} \frac{B_2}{B_0} \left(\left(n_+ + \frac{1}{2} \right) + \frac{\omega_-}{\omega_+} \left(n_- + \frac{1}{2} \right) + m_s \frac{g}{2} \right)$$

 $\begin{array}{l} \Delta\nu_{+}\approx 62\ mHz\\ \Delta\nu_{-}\approx 0.04\ mHz\\ \Delta\nu_{S}\approx 172\ mHz \end{array}$

SMORRA, Christian, et al. Base–the baryon antibaryon symmetry experiment. *The European Physical Journal Special Topics*, 2015, 224. Jg., Nr. 16, S. 3055-3108.

2. Determination of ω_{L}

Couple spinstate to axial frequency by superimposing a magnetic bottle $(B_2 \approx 300\ 000\ T\ m^{-2})$

$$\Delta\omega_{z} = \frac{\hbar\omega_{+}}{m\omega_{z}}\frac{B_{2}}{B_{0}}\left(\left(n_{+} + \frac{1}{2}\right) + \frac{\omega_{-}}{\omega_{+}}\left(n_{-} + \frac{1}{2}\right) + m_{s}\frac{g}{2}\right)$$

Probe spinflip probability as function of drive frequency ω_{RF}

SMORRA, Christian, et al. Observation of individual spin quantum transitions of a single antiproton. Physics Letters B, 2017, 769. Jg., S. 1-6.

2. Determination of ω_L

Cyclotron heating rate increases with cyclotron temperature

$$\zeta_{+} = n_{+} \frac{q^2}{2\hbar m \,\omega_{+}} S_E(\omega_{+})$$

Measurement requires cold particle \rightarrow Cooling

SMORRA, C., et al. A parts-per-billion measurement of the antiproton magnetic moment. Nature, 2017, 550. Jg., Nr. 7676, S. 371.

SMORRA, C., et al. A parts-per-billion measurement of the antiproton magnetic moment. Nature, 2017, 550. Jg., Nr. 7676, S. 371.

SMORRA, C., et al. A parts-per-billion measurement of the antiproton magnetic moment. Nature, 2017, 550. Jg., Nr. 7676, S. 371.

Effect	Correction (p.p.b.)	Uncertainty (p.p.b.)
Image-charge shift	0.05	0.001
Relativistic shift	0.03	0.003
Magnetic gradient	0.22	0.020
Magnetic bottle	0.12	0.009
Trap potential	-0.01	0.001
Voltage drift	0.04	0.020
Contaminants	0.00	0.280
Drive temperature	0.00	0.970
Spin-state analysis	0.00	0.130
Total systematic shift	0.44	1.020

- 1. Contaminants
 - → Compare charge-to-mass ratio for both particles
 - \rightarrow Limited by statistics of comparison measurement

2. Drive temperature

- \rightarrow Larmor drive could increase noise floor of axial detector
- $\rightarrow \omega_{L}$ and ω_{C} are probed at different magnetic fields

3. Spin-state analysis

- \rightarrow Spinflip detection is stochastic process with 80% 90% fidelity
- \rightarrow Uncertainty in cyclotron fluctuations

- Improved Magnetic field stability
- Implementation of phase-sensitive methods

\rightarrow Improved uncertainty for contaminants exclusion

2017:

2020:

SMORRA, C., et al. A parts-per-billion measurement of the antiproton magnetic moment. *Nature*, 2017, 550. Jg., Nr. 7676, S. 371. SCHNEIDER, Georg, et al. Double-trap measurement of the proton magnetic moment at 0.3 parts per billion precision. *Science*, 2017, 358. Jg., Nr. 6366, S. 1081-1084.

- Detune resonator from particle
- Fit narrow peak feature
- Unknown systematics
 - → Useful for relative frequency measurements

BORCHERT, M. J., et al. Measurement of Ultralow Heating Rates of a Single Antiproton in a Cryogenic Penning Trap. Physical review letters, 2019, 122. Jg., Nr. 4, S. 043201.

- Triple Trap technique allows determination of the antiproton *g*-factor at a fractional precision of 1.5 p.p.b.
- Clear path towards a 100 p.p.t. measurement after LS2 exists
- Upgrades open possibility for single particle scheme

