DREB2022 - Direct Reactions with Exotic Beams

Contribution ID: 210 Type: Oral contribution

Cluster states in 14C and 15C studied with the 10Be+9Be reactions

Monday 27 June 2022 11:40 (20 minutes)

In this contribution, a brief analysis will be given of an experiment performed at LNS-INFN (July 2018) with a 54 MeV 10 Be beam and a 9 Be target. The 10 Be+ 9 Be reactions are measured to get information on different types of structures of several light nuclei. Special attention is given to a search for cluster states in 14 C and 15 C. The 9 Be isotope has been chosen as the experimental target because of the existence of a cluster structure 5 He+ 4 He inside its ground state. Such target structure, alongside the choice of the 10 Be radioactive beam with a suitable energy of 54 MeV, means that the transfer of one of the aforementioned clusters from the target to the beam should result in the creation of the sought 14 C or 15 C isotopes. This should be followed by sequential decay into several channels, some of which are 4 He + 10 Be for 14 C and 4 He + 11 Be or 6 He + 9 Be for 15 C. If we manage to see the experimental signature of these processes, this would be the first indication of the existence of cluster states inside the 15 C nucleus, while a positive result for the 14 C isotope would help to clear up the contradicting findings of other authors.

The experimental setup consists of four highly segmented telescopes covering polar angles from 20° to 90° which enable particle identification using traditional ΔE -E techniques. E part of the telescope is a double-sided silicon strip detector divided into 16 strips at each side, while the ΔE part is one-sided with 16 strips. Preliminary results for the reaction channels of interest will be shown. Plans for the remaining analysis will also be included.

Topic

Experiment

Primary author: Mr NURKIĆ, Deni (University of Zagreb, Faculty of Science, Department of Physics)

Co-authors: Prof. MILIN, Matko (University of Zagreb, Faculty of science); Dr JELAVIĆ MALENICA, Deša (Ruđer Bošković Institute); VUKMAN, Nikola (Ruđer Bošković Institute); Dr SOIĆ, Neven (Ruđer Bošković Institute); FIGUERA, P. (INFN-Laboratori Nazionali del Sud); Dr DI PIETRO, A. (INFN-Laboratori Nazionali del Sud); Dr CHERUBINI, S. (INFN-Laboratori Nazionali del Sud); ČOLOVIĆ, P. (Ruđer Bošković Institute); LAMIA, L. (INFN-Laboratori Nazionali del Sud); PIZZONE, G. (INFN-Laboratori Nazionali del Sud); SCHUMANN, M.D. (Paul Scherrer Institute, Viligen); SPITALERI, C. (INFN-Laboratori Nazionali del Sud); TUMINO, A. (INFN-Laboratori Nazionali del Sud); Dr UROIĆ, M. (Ruđer Bošković Institute)

Presenter: Mr NURKIĆ, Deni (University of Zagreb, Faculty of Science, Department of Physics)

Session Classification: MON2