Study of the magicity of the ${ }^{13} \mathrm{~B}$ nucleus and mixed configurations in ${ }^{12} \mathrm{Be}$ via QFS knockout reactions

A. Barrière, A. Kamenyero, A. Revel, O. Sorlin, F.M.Marqués, T. Aumann, C. Caesar, M. Holl, V. Panin, M. Vandebrouck, F. Wamers, C.X. Y uan and $R^{3} B$ collaboration

1) Outines

II) Magicity of ${ }^{133}$

$13 \mathrm{~B}, \mathrm{p}, \mathrm{pn})^{12 \mathrm{~B}}$

Closed shell:
\rightarrow normal configuration

II) Magicity of ${ }^{133}$

Closedshell:
Positive parity

11) Magicity of ${ }^{13 B}$

Closedshell: Positive parity

(tínbouidsades)

Unclosed shell (2p2h) : Negative parity

II) Magicity of ${ }^{133}$

II) Magicity of ${ }^{133}$

II) Populate bound and unbound states in ${ }^{12}$ B Using $R^{3} B$ - LAND setup

II) Populate bound and unbound states in $12 B$ using $R^{3} B$ - LAND setup

II) Bound states in ${ }^{12}$ B studied by admmariay emission

Counts/73 keV

The main contribution for
the bound states comes from the ne utron orbital

$$
S_{n}=3369 \mathrm{keV}
$$

$$
\begin{aligned}
& 0+\quad 2723 \mathrm{keV} \\
& \\
& 2621 \cdot \mathrm{keV}
\end{aligned}
$$

$$
-\left(1 p_{3 / 2}\right) \otimes v\left(1 p_{3 / 2}\right)
$$

$$
-\left(0^{+}, 1+2^{+}, 3^{+}\right)
$$

$$
1\left(1 p_{3 / 2}\right) \otimes v\left(2 s_{1 / 2}\right)
$$

$$
-(1-2)
$$

$$
m\left(1 p_{3 / 2}\right) \otimes v\left(1 p_{1 / 2}\right)
$$

$$
\rightarrow\left(1^{+}, 2^{+}\right)
$$

II) Study of unbound states via neutron emission

Cross section of the multiplet coming from $1 d_{5 / 2} \sim 15 \%$ of the one from

Gammas detected in coincidence $<9 \%$ of the total neutron events

$$
\begin{gathered}
\pi\left(1 p_{3 / 2}\right) \otimes v\left(1 p_{3 / 2}\right) \\
>\left(0^{+}, 1^{+}, 2^{+}, 3^{+}\right) \\
\\
-\left(1 p_{3 / 2}\right) \otimes v\left(1 d_{5 / 2}\right) \\
>\left(1,2,3^{-}, 4^{4}\right)
\end{gathered}
$$

II) Ground state of the ${ }^{13} \mathrm{~B}$ nucleus

The Quasi Free Scattering approximation was used to calculate the oretical cross sections for a single particle (C.Bertulani).

These values are then compared to the experimental ones to determine
the corresponding $C^{2} S$ values.

$$
\begin{aligned}
& 2 s i / 2-4 \% \%(1 \mathrm{sigma}) \\
& 10 / 5 \times 11.2(45) \%
\end{aligned}
$$

The magicity of $\mathrm{N}=8$ is strongly preserved in the ${ }^{13} \mathrm{~B}$ nucleus

In good agreement with:

- Shell Model calculations of Cenxi Yuan;
- the experimental results from ${ }^{13} \mathrm{~B}(\mathrm{p}, \mathrm{d})^{12} \mathrm{~B}$ reaction (W. Liv et al. Phys. Rev.C 104, 064605, 2021):
$1 \mathrm{p}_{1 / 2}: 83(6) \% \quad 2 \mathrm{~s}_{1 / 2}: 5(2) \% \quad 1 \mathrm{~d}_{5 / 2}: 12(2) \%$

III) Search for spherical and deformed 0^{+}and 2+ states in ${ }^{12} \mathrm{Be}$

The ${ }^{13} \mathrm{~B}(\mathrm{p}, 2 \mathrm{p})^{12} \mathrm{Be}$ reaction will feed $\mathrm{O}^{+}, 0^{+}{ }_{2}$ and $2^{+}{ }_{1}, 2^{+}{ }_{2}$
Spherical, deformed, mixing configuration? -> use of Liu et al (2022) results combined with our work to answer

III) Results for neutrons (in) spectroscopy


```
Decay energy fitted by two
BW separated by }320\textrm{keV
The branching ratio to
excited and GS is 62 }\pm2
and }38\pm2%:goo
agreement with. H. Fortune
-Width smaller than before:
640 keV (Smith et al)
460 keV (this work)
```


- Negative parity ($\mathrm{L}=2 \mathrm{BW}$) excluded -> $2+$ state
$-\sigma\left(2^{+}{ }_{2}\right) / \sigma\left(2^{+}{ }_{1}\right) \approx 6.6$
\rightarrow Large feeding of the $2^{+}{ }_{2}$: spherical
-> Possible $2 n$ emission ? $\mathrm{B}_{2 n}\left(2^{+}{ }_{2}\right)=4.0(5) \%$ In good agreement with Fortune and Smith

IV) Comparison of results

C2S table	Lui ef al (2022)	This work
$0^{+}{ }_{1}+0^{+}{ }_{2}$	X	$0.636(74)$
$\mathrm{O}^{+}{ }_{1}$	$0.49(8)$	X
$0^{+}{ }_{2}+2^{+}{ }_{1}$	$0.60(11)$	X
$2^{+}{ }_{1}$	X	$0.145(27)$
$2^{+}{ }_{2}$	$1.49(20)$	$1.00(9)$
Sum	$2.58(24)$	$1.78(12)$

Normalisation to be checked

V) Conclusion

- Achievement of a combined analysis of the $(p, p n)$ and $(p, 2 p)$ reactions that demonstrates the sphericity of 13 B , thus fav oring the fee ding of spherical states in ${ }^{12 \mathrm{Be}}$.
- Analysis made up to states above the $S_{2 n}$ thanks to the complete kinematics measuments of these reactions; allowed by the LAND and Crystal ball detectors. The two 0^{+}seem mixed contrary to the 2^{+}which present a significant difference of cross section: the 2_{2}^{+}being rather spherical.
- Good agreement with the method using (p, d) and $\left(d^{3} \mathrm{He}\right)$ transfer reactions performed by Liv et al and complementarity of these methods.

Thank you for your attention!

Y-energy sum spectrum for multiplicity $=2$

Photopeak efficiency for source validated by measurements

Photopeak efficiency for gamma emitted in flight

Efficiency of LAND

Resolution of LAND

Cross section distribution for CH 2 target

Cross section distribution for C target

Distributions of the neutron occupancy in psd orbital

Final fit of the decay energy

Other fits of the decay energy using $L=0$ and $L=2$

Fit for $\mathrm{Er}(10 \mathrm{Be}+2 \mathrm{n})<2 \mathrm{MeV}$:

1. sequential transition identified
W. A.Peters, Phys. Rev. C 83,057304 (2011)

Direct decay from the $2+2$ to $10 \mathrm{BE}(G S$)

Gammas in coincidence with 2 neutrons in LAND

Charge exchange ${ }^{12} \mathrm{~B}(7 \mathrm{~L}, \mathrm{Be})^{12 \mathrm{Be} \text { and }}$ comparison with shell model calculations
R. Meharchand et al., Phys. Rev. Lett 108 (2012) 122501

$$
\begin{aligned}
& \% \mathrm{p}_{1 / 2}\left(\mathrm{O}_{+}\right)=24 \pm 5 \\
& \% \mathrm{p}_{1 / 2}\left(\mathrm{O}_{2}\right)=59 \pm 5
\end{aligned}
$$

Cross section for ${ }^{13} B(p, 2 p)^{12}$ Be reaction

$$
\left.\sigma\left(0_{i}^{+}\right) \propto\left|\left\langle 0_{i}^{+}\right| \mathrm{a}_{\nu}^{-}\right| 3 / 2_{G S}^{-}\right\rangle\left.\right|^{2}
$$

Assuming a similar value given by the removal operator in both cases

Transfertreaction ${ }^{11 B e}(\mathrm{~d}, \mathrm{p})^{12} \mathrm{Be}^{2}$

J. Chen et al. Phys Rev.C 98 (2018)014616

$$
\begin{aligned}
& \%_{s_{1 / 2}\left(O^{+}\right)}=19 \pm 7 \\
& \mathrm{~d}_{5 / 2}\left(\mathrm{O}_{2}^{+}\right)=57 \pm 7 \\
& \% \mathrm{~s}_{1 / 2}\left(\mathrm{O}_{2}+39 \pm 2\right. \\
& \% \mathrm{~d}_{5 / 2}\left(\mathrm{O}^{+}\right)=2 \pm 2
\end{aligned}
$$

$C^{2} S($ isomer $) / C^{2} S(G S)=1.20(24)$

$\mathrm{C}^{2} \mathrm{~S}\left(\mathrm{O}^{+}(\mathrm{GS})\right)=0.411(67) \mathrm{mb}$
$\mathrm{C}^{2} \mathrm{~S}\left(0^{+}(\right.$isomer $\left.)\right)=0.532(79) \mathrm{mb}$
Good agreement with previous values

theta(1) vs theta(2)
phi(1) vs phi (2)

