Population of the Giant Pairing Vibration in the ${ }^{12} \mathrm{C}\left({ }^{18} \mathrm{O},{ }^{16} \mathrm{O}\right){ }^{14} \mathrm{C}$ reaction

F. Barranco
Sevilla University

R.A. Broglia

The Niels Bohr Institute, Copenhagen

G. Potel
Livermore National Laboratory

E. Vigezzi
INFN Milano

A collective nuclear mode: monopole pairing vibrations

R.A. Broglia, O. Hansen, C.Riedel, Adv. Nucl. Phys. 6 (1973) 287

The Giant Pairing Vibration

$$
\begin{aligned}
& |A+2, \tau\rangle=\left(\sum_{m<n} X_{m n}^{\tau} a_{m}^{+} a_{n}^{+}-\sum_{i<j} Y_{i j}^{\tau} a_{j}^{+} a_{i}^{+}\right)|A, 0\rangle \\
& \left(\begin{array}{ll}
A & B \\
B^{+} & C
\end{array}\right)\binom{R_{p}^{\tau, \lambda}}{R_{h}^{\tau, \lambda}}=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)\binom{R_{p}^{\tau, \lambda}}{R_{h}^{\tau, \lambda}} \cdot \hbar \Omega_{\tau, \lambda},
\end{aligned}
$$

$$
\begin{array}{rlrl}
A_{m n m^{\prime} n^{\prime}} & =\delta_{m m^{\prime}} \delta_{n n^{\prime}}\left(\epsilon_{m}+\epsilon_{n}\right)+\bar{v}_{m n m^{\prime} n^{\prime}}, & \left(R_{p}^{\tau}\right)_{m n}=X_{m n}^{\tau}, & \left(R_{p}^{\lambda}\right)_{m n}=Y_{m n}^{\lambda}, \\
C_{i j \prime^{\prime} j^{\prime}} & =-\delta_{i i^{\prime}} \delta_{i j^{\prime}}\left(\epsilon_{i}+\epsilon_{j}\right)+\bar{v}_{i j j^{\prime} j^{\prime}}, & \left(R_{h}^{\tau}\right)_{i j}=Y_{i j}^{\tau}, & \left(R_{h}^{\lambda}\right)_{i j}=X_{i j}^{\lambda} . \\
B_{m n i j} & =-\bar{v}_{m n i j}, &
\end{array}
$$

Several unsuccessful experimental searches have been carried out over the years, but recently a bump has been detected at $\mathrm{E}^{*} \approx 16$ MeV in the reaction ${ }^{12} \mathrm{C}\left({ }^{18} \mathrm{O},{ }^{16} \mathrm{O}\right){ }^{14} \mathrm{C}$ at $\mathrm{E}_{\mathrm{lab}}=84$ and 275 MeV and intepreted as a signature of GPV

F. Cappuzzello et al., Nat. Comm. 6 (2015) 6743

F. Cappuzzello et al., Eur. Phys. J. A 57 (2021) 34

${ }^{160}$

pp-RPA with the Gogny force

(Blanchon et al. PRC 82 (2010) 034313

$$
S_{W S}^{i}=\sum_{n n^{\prime} l j}\left[X_{n n^{\prime} l j}^{i}+Y_{n n^{\prime} l j}^{i}\right] \int d r G(r) \psi_{n l j}(r) \psi_{n^{\prime} l j}(r) .
$$

$$
G(r) \equiv\left(1+\exp \left[\left(r-R_{S}\right) / a_{S}\right]\right.
$$

$$
\begin{aligned}
& 1 p_{1 / 2} \\
& 1 p_{3 / 2} \\
& 1 \mathrm{~s}_{1 / 2}
\end{aligned}
$$

\ldots	$1 p_{3 / 2}$
\ldots	$1 s_{1 / 2}$

EXTENDED pp-RPA

$$
\left(\begin{array}{cc}
A_{p p^{\prime} p^{\prime \prime} p^{\prime \prime \prime}} & B_{p p^{\prime} h^{\prime \prime} h^{\prime \prime \prime}} \\
B_{p^{\prime \prime} p^{\prime \prime \prime} h h^{\prime}} & A_{h h^{\prime} h^{\prime \prime} h^{\prime \prime \prime}}
\end{array}\right)\binom{X_{p^{\prime \prime} p^{\prime \prime \prime}}}{Y_{h^{\prime \prime} h^{\prime \prime \prime}}}=E\binom{X_{p p^{\prime}}}{Y_{h h^{\prime}}}
$$

Includes Selfoenergy and Induced Interaction $\leftrightarrow>$ PVC

$$
\begin{aligned}
A_{p p^{\prime} p^{\prime \prime} p^{\prime \prime \prime}}= & {\left[\left(\epsilon_{p}+\epsilon_{p^{\prime}}\right)+\sum_{p p^{\prime \prime}\left(p^{\prime}\right)}(E) \delta_{p^{\prime} p^{\prime \prime \prime}}+\Sigma_{p^{\prime} p^{\prime \prime \prime}(p)}(E) \delta_{p p^{\prime \prime}}\right.} \\
& \left.+V_{p p^{\prime} p^{\prime \prime} p^{\prime \prime \prime}}^{\text {bare }}+V_{p p^{\prime} p^{\prime \prime} p^{\prime \prime \prime}}^{\text {ind }}(E)+\operatorname{Exch}(p, p)\right] N_{p p^{\prime} p^{\prime \prime} p^{\prime \prime \prime}}
\end{aligned}
$$

$$
V_{p p^{\prime} p^{\prime \prime} p^{\prime \prime \prime}}^{i n d}=\sum_{\lambda \nu}\left[\frac{h_{p p^{\prime \prime} \lambda \nu} h_{p^{\prime \prime \prime} p^{\prime} \lambda \nu}}{E-\left(\epsilon_{p^{\prime \prime}}^{e m p}+\epsilon_{p^{\prime}}^{e m p}+\hbar \omega_{\lambda \nu}\right)}+\frac{h_{p^{\prime \prime} p \lambda \nu} h_{p^{\prime} p^{\prime \prime \prime} \lambda \nu}}{E-\left(\epsilon_{p}^{e m p}+\epsilon_{p^{\prime \prime \prime}}^{e m p}+\hbar \omega_{\lambda \nu}\right)}\right]
$$

$$
\begin{equation*}
\Sigma_{p p^{\prime \prime}\left(p^{\prime}\right)}(E)=\sum_{b, \epsilon_{b}>\epsilon_{F} \lambda \nu} \frac{h_{p b \lambda \nu} h_{p^{\prime \prime} b \lambda \nu}}{E-\left(\epsilon_{b}^{e m p}+\epsilon_{p^{\prime}}^{e m p}+\hbar \omega_{\lambda \nu}\right)}+\sum_{c, \epsilon_{c}<\epsilon_{F} \lambda \nu} \frac{h_{p c \lambda \nu} h_{p^{\prime \prime} c \lambda \nu}}{E-\epsilon_{C}^{e m p}-\epsilon_{p^{\prime}}^{e m p}+\hbar \omega_{\lambda \nu}} \tag{6}
\end{equation*}
$$

The self-energy and the induced interaction are energydependent, but it is possible to reconstruct the amplitudes of the resulting $0+$ states on the intermediate $2 \mathrm{p}-1$ phonon states, so that they can be written:

Many-body states in $\mathrm{N}=7$ isotones arising from quadrupole coupling with single-particle states calculated in a common mean-field potential

Form factors:
_ \quad volume
—— surface

${ }^{18} \mathrm{O}+{ }^{12} \mathrm{C}$ optical potential

S. SZILNER et al.

PHYSICAL REVIEW C 64064614

FIG. 2. Same caption as for Fig. 1 but for the ${ }^{18} \mathrm{O}+{ }^{12} \mathrm{C}$ elastic scattering at 120,100 , and 85 MeV .

TABLE II. Phenomenological potentials; the real part is a WS2 term and the imaginary part is a WS1 term (pure volume).

${ }^{16} \mathrm{O}+{ }^{12} \mathrm{C} R_{V}=4 \mathrm{fm}, a_{V}=1.4 \mathrm{fm}$					
$\begin{gathered} E_{\mathrm{lab}} \\ (\mathrm{MeV}) \end{gathered}$	$\begin{gathered} E_{\text {c.m. }} \\ (\mathrm{MeV}) \end{gathered}$	$\begin{gathered} V \\ (\mathrm{MeV}) \end{gathered}$	$\begin{gathered} W \\ (\mathrm{MeV}) \end{gathered}$	$\begin{gathered} R_{W} \\ (\mathrm{fm}) \end{gathered}$	$\begin{gathered} a_{W} \\ (\mathrm{fm}) \end{gathered}$
132	56.6	293	13.4	5.900	0.603
124	53.2	290	14.1	5.712	0.636
115.9	49.7	290	13.0	5.878	0.522
100	42.9	297	10.4	6.079	0.523
94.8	40.6	297	8.8	6.672	0.317
80.0	34.3	297	9.0	6.557	0.322
${ }^{18} \mathrm{O}+{ }^{12} \mathrm{C} R_{V}=4.08 \mathrm{fm}, a_{V}=1.38 \mathrm{fm}$					
$E_{\text {lab }}$	$E_{\text {c.m. }}$	V	W	R_{W}	a_{W}
(MeV)	(MeV)	(MeV)	(MeV)	(fm)	(fm)
120	48	293	13.4	6.443	0.523
100	40	305	13.9	6.270	0.615
85	34	324	18.3	5.930	0.562

${ }^{12} \mathrm{C}\left({ }^{18} \mathrm{O},{ }^{16} \mathrm{O}\right){ }^{14} \mathrm{C}$ (gs) at $\mathrm{E}_{\text {lab }}=84 \mathrm{MeV}$

2nd order DWBA calculation (G. Potel, Rep. Prog. Phys. 76(2013) 106301)

CONCLUSIONS

We have computed the $2 n$-transfer strength to populate $0+$ states in the continuum of 14C and made the first steps to compute the absolute cross section of the reaction ${ }^{12} \mathrm{C}\left({ }^{18} \mathrm{O},{ }^{16} \mathrm{O}\right){ }^{14} \mathrm{C}$. The theoretical model is based on particle-particle RPA extended to include the effects of coupling to collective quadrupole vibrations, in keeping with previous calculations of weakly-bound systems.

The aim is to compare our results with the bump and the associated angular distribution revealed in the excitation spectrum and attributed to the Giant Pairing Vibration.

