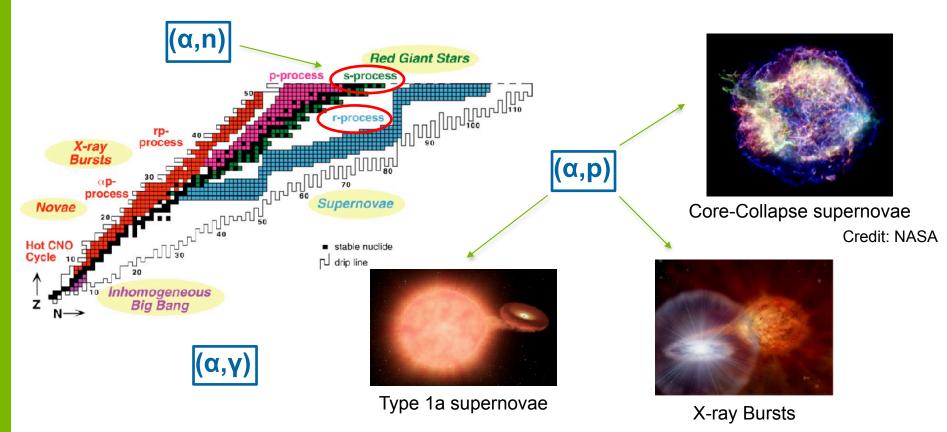
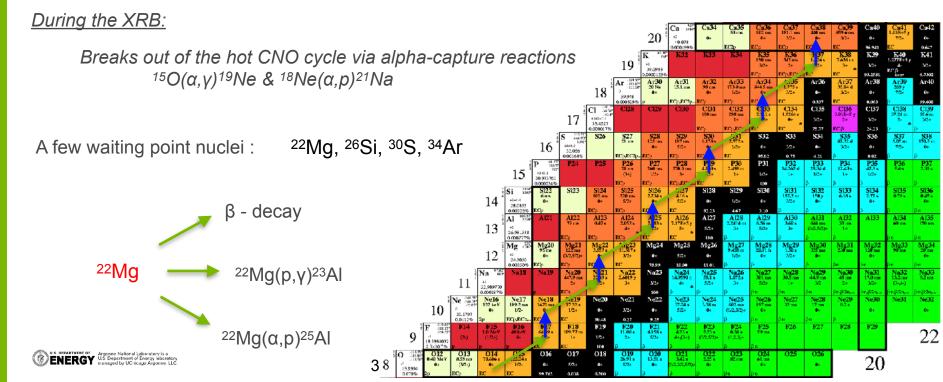
DIRECT REACTIONS WITH EXOTIC BEAMS 2022


Direct measurement of the ²²Mg(α,p)²⁵Al reaction using MUSIC relevant for Type I X-ray bursts

Heshani Jayatissa Argonne National Laboratory June 28, 2022 Santiago de Compostela, ES

Alpha-induced reactions for nuclear astrophysics


2

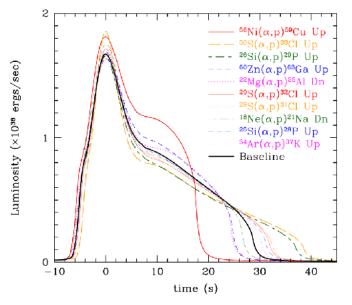
Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.


Importance of (α,p) reactions for X-ray bursts

Before the XRB:

H is burnt via the hot CNO cycle \longrightarrow powered by 3α reaction \longrightarrow thermonuclear runway

Importance of XRB models

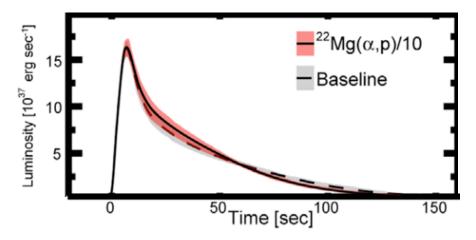

- Comparisons between XRB models and observed light curves allows to constrain elements of neutron stars:
 - Composition
 - Mass-Radius ratio
 - Compactness
 - Accretion rate
 - Accretion-based heating
- Models also allow predictions of the XRB ashes which alters the composition of the neutron star crust.
- XRB models are sensitive to nuclear physics inputs such as reaction rates.

XRB SENSITIVITY STUDY

Cyburt et al. (2016)

R. H. Cyburt et al. (2016)

Rank	Reaction	Type ^a	Sensitivity ^b	Category
1	$^{15}{\rm O}(\alpha, \gamma)^{19}{\rm Ne}$	D	16	1
2	$^{56}Ni(\alpha, p)^{59}Cu$	U	6.4	1
3	59 Cu(p, $\gamma)^{60}$ Zn	D	5.1	1
4	61 Ga(p, γ) 62 Ge	D	3.7	1
* 5	$^{22}Mg(\alpha, p)^{25}Al$	D	2.3	1
6	${}^{14}O(\alpha, p){}^{17}F$	D	5.8	1
7	$^{23}A1(p, \gamma)^{24}Si$	D	4.6	1
8	¹⁸ Ne(α , p) ²¹ Na	U	1.8	1
9	$^{63}\text{Ga}(\text{p}, \gamma)^{64}\text{Ge}$	D	1.4	2
10	$^{19}F(p, \alpha)^{16}O$	U	1.3	2
11	$^{12}C(\alpha, \gamma)^{16}O$	U	2.1	2
12	$^{26}\text{Si}(\alpha, p)^{29}\text{P}$	U	1.8	2
13	${}^{17}F(\alpha, p){}^{20}Ne$	U	3.5	2
14	$^{24}Mg(\alpha, \gamma)^{28}Si$	U	1.2	2
15	${}^{57}Cu(p, \gamma){}^{58}Zn$	D	1.3	2
16	60 Zn(α , p) 63 Ga	U	1.1	2
17	${}^{17}{ m F}({ m p},\gamma){}^{18}{ m Ne}$	U	1.7	2
18	40 Sc(p, γ) 41 Ti	D	1.1	2
19	$^{48}Cr(p, \gamma)^{49}Mn$	D	1.2	2



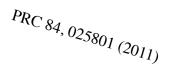
SENSITIVITY STUDY Meisel et al. (2019)

Studied the impact of the 19 reactions identified by Cyburt et al. in model-observation comparisons for for XRBs

☆ ¹⁵ O(α,γ)	²² Mg(α,p)
☆ ²³ Al(p,γ)	²⁴ Mg(α,γ)
¹⁴ Ο(α,p)	⁵⁹ Cu(p,γ)
¹⁸ Ne(α,p)	⁶¹ Ga(p,γ)

Reaction rate of ${}^{22}Mg(\alpha,p)$ from theoretical Hauser-Feshbach was divided by a factor of 10 to assess the light curve impact.

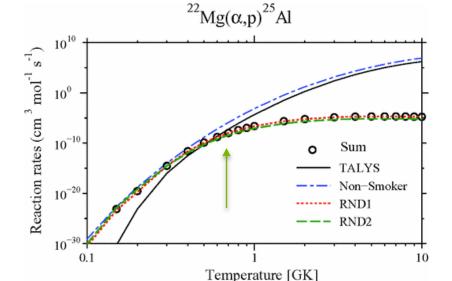
This effects the XRB light curve tail due to the enhancement of hydrogen burning early in the burst via ${}^{22}Mg(p,\gamma){}^{23}Al(p,\gamma){}^{24}Si$



H. Jayatissa - DREB 2022

Indirect measurement using ²⁸Si(p,t)²⁶Si A. Matic et al. (2011)

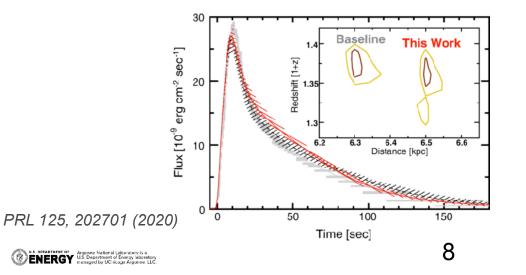
TABLE III. The adopted S_{α} and spin values and resonance strengths for the four resonances in the ²²Mg(α , p)²⁵Al reaction.

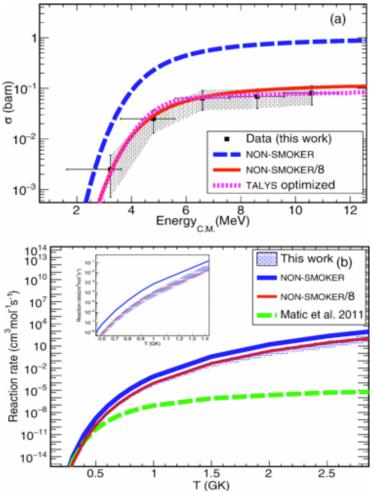

E _x (²⁶ Si) (MeV)	E _{res} (MeV)	J^{π}	Sα	J	$\begin{array}{c} \text{Mirror}^{a} \\ \omega \gamma \ (\text{eV}) \end{array}$	J	RND1 ^b $\omega \gamma$ (eV)	J	RND2 ^b ωγ (eV)
9.316	0.152	[4+]	0.015	4	5.81 ×10 ⁻³⁷	1	6.22×10^{-35}	4	5.81×10 ⁻³⁷
9.605	0.441	[2+]	0.037	2	1.20×10^{-14}	1	6.66×10^{-15}	0	1.98×10^{-14}
9.762	0.598	[5-]	0.007	5	3.72×10^{-13}	5	3.72×10^{-13}	2	1.23×10^{-10}
9.903	0.739	[0+]	0.037	0	5.14×10^{-08}	0	5.14×10^{-08}	1	1.79×10^{-08}

^aSpin and resonance strength for the mirror assignments.

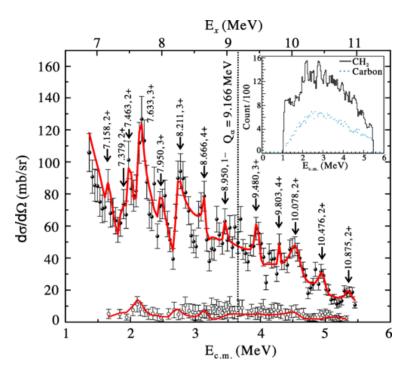
^bSpin and resonance strength for the randomly generated spins of states.

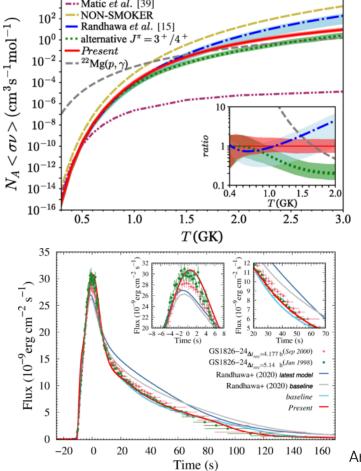
- Observed 4 resonances in ²⁶Si above alpha threshold.
- Uncertainty in spin-parities of the measured states and the lack of resonance data above E_x = 10 MeV
- Reaction rate for ${}^{22}Mg(\alpha,p)$ is significantly lower than predicted by HF calculations for T > 0.7 GK.



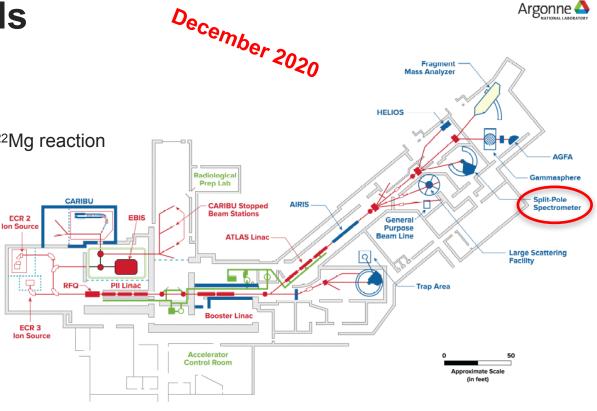

7

First direct measurement J. S. Randhawa et al. (2020)


²²Mg 5 MeV/u on He:CO₂ gas target in AT-TPC


Reaction CS is in agreement with theoretical Hauser-Feshbach cross sections using NON-SMOKER divided by a factor of 8 !!

(In)elastic scattering using ${}^{25}AI + p$ J. Hu et al. (2021)

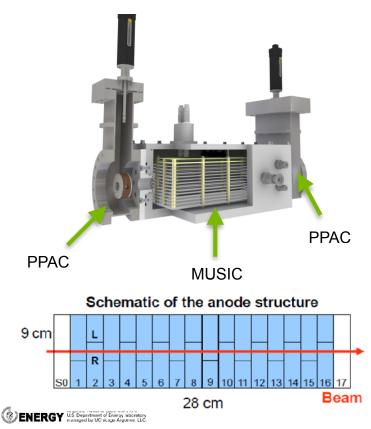


PRL 127, 172701 (2021)

9

Experiment details

- Primary beam ²⁰Ne
- ²²Mg created through ²⁰Ne(³He,n)²²Mg reaction
- 74 MeV secondary ²²Mg beam
- Beam intensity ~150-200 pps
- Pure He gas target at 400 torr



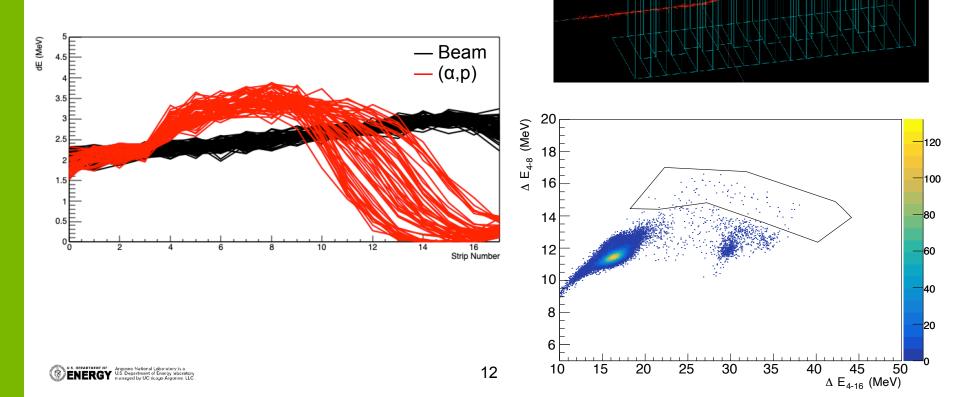
ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

RP071701

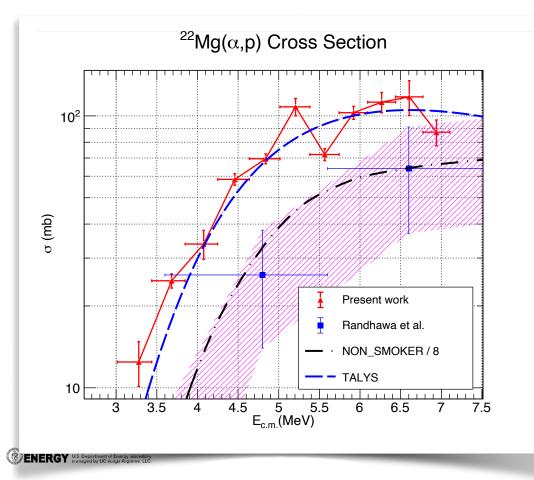
MUSIC detector MUlti-Sampling Ionization Chamber

- Active target detector
- MUSIC offers a high efficiency due to the segmented anode structure.

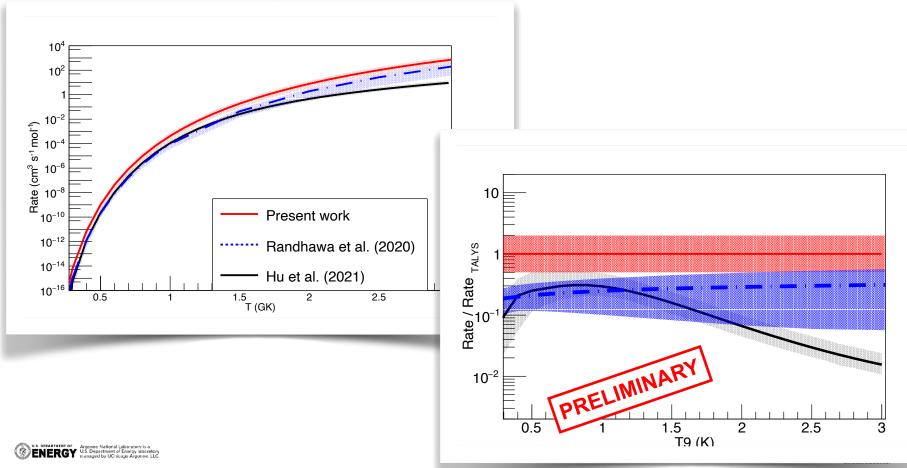
This allows to measure a wide energy range with just a single beam energy.


• MUSIC is self-normalizing.

Absolute normalization can be obtained with no additional monitor detectors.


- Gases: ⁴He, ^{20,22}Ne, Ar, CH₄, etc
- Pressures: 150 760 Torr

Particle identification Events occurring in Strip 4 of MUSIC


Total reaction cross section

- TALYS calculations performed by P. Mohr using McFadden & Satchler α-OMPs .
- Experimental CS are in good agreement with theoretical TALYS CSs within a factor of 2.
- Total reaction cross sections from the present work are higher than those of Randhawa et al. (2020)

13

Reaction rate comparison

SUMMARY

- A direct measurement of the ${}^{22}Mg(\alpha,p){}^{25}AI$ reaction was performed using MUSIC at ATLAS.
- Total reaction cross sections are presented.
- Total reaction cross section is in good agreement with TALYS predictions within a factor of 2.
- Astrophysical implications are currently under investigation.

THANK YOU

