Scattering of ¹⁵C on ²⁰⁸Pb at energies near the Coulomb barrier

María José García Borge (on behalf of J. D. Ovejas, V. G Távora)

Light nuclei: a quantum mechanics laboratory

Quantum mechanics plays a role in creating peculiar structures in ground states of light nuclei: nuclear skins and/or nuclear halos, nuclear clusters, nuclear molecules, gas condensate

Theoretical understanding of the structure of light drip-line nuclei is challenging →
 Ab-Initio calculations are reaching good description of structure of light nuclei.
 In order to handle new observables and exotic structures → New theoretical models

Nuclear Experimental

IEM

In order to handle new observables and exotic structures -> New theoretical models needs to be able to describe reaction dynamics

M.J.G. Borge- Elastic scattering of 15C – DREB 2022

Halo Nuclei

The nuclear halo is a threshold effect arising from the very weak binding energy (0.1-1 MeV) of the outer nucleon(s)

- Extended mass distribution
- Large rms radius
- Large reaction cross section
- Narrow momentum distribution following fast fragmentation
- Concentration of B(E1) close to BU threshold

G. Sawhney et al, J. Phys G Nuc part Phys 41 (2014) 055101

18Na 19Na 20Na 21Na 22Na 23Na 24Na 25Na 26Na 27Na 28Na 29N

Neutron Haloes

Provide an ideal test bench to study few-body correlations by measuring elastic, nucleon transfer and breakup

Tanihata, PRL 55 (1985)2676

- Coupling between relative motion and internal degrees of freedom
 - Elastic inelastic transfer breakup fusión + effects of the continuum
- Strong absorption in elastic channel
- Large cross section for fragmentation

Easy polarizable: distorsion of structure in vecinity of heavy target \rightarrow Coulomb dipole polarizability

What makes ${}^{15}C(T_{1/2} = 2.45s)$ Interesting ?

- Realively weakly bound
 - $S_n = 1.2 \text{ MeV}; S_{2n} = 9.4 \text{ MeV}$
- Relatively narrow longitudinal momentum distribution
- First excited state (E = 740 keV)
- Ground state $2s_{1/2} \rightarrow$

a s-wave 1n-halo coupled to ¹⁴C could explains these features,

Spectroscopic Factor

Grupo de Física Nuclear Experimental

IEM

Aumann et al., EPJA 26 (2005)

446 M.J.G. Borge- Elastic scattering of 15C – DREB 2022

¹⁵C: Controversial 1n-halo

- Reaction cross section larger than ^{14,16}C at intermediate energies, but not at higher energies
 - It seems that coupling increases when energy decreases
- B(E1) deduced from coulomb breakup of ¹⁵C on Pb longer tail than ¹¹Be and smaller value of mean square radius.
- Nuclear matter radii and density recently revisited

$$R_m = 2.59(5) \text{ fm}$$
; $R_p = 2,37(3) \text{ fm}$ $R_n = 2,73(8) \text{ fm} \rightarrow \delta_{np} = 0.36(9) \text{ fm}$

 $R_c = 2,41(5) \text{ fm}$; $R_v = 4.36 (38) \text{ fm} \rightarrow \kappa = R_v / R_c = 1.81 \text{ (halo } \kappa > 2)$

Nakamura et al., PRC 79 (2009) 035805

Elastic Scattering of halo/skin Nuclei @ Coulomb Barrier

- We have studied the halo effects on the elastic scattering on heavy targets at energies close to the Coulomb barrier
- The scattering of loosely bound n-rich system in the strong electromagnetic field of the reaction target induces a dipole polarization in the projectile.
- A strong absorption in the elastic channel and the suppression of the rainbow arising from the Fresnel interference in the Optical Model is found.
- The structure effects manifest on the angular distribution of the elastic cross section.

- Reaction studies done at high energies all agree with a moderate halo structure for ${}^{15}C \rightarrow$ Which is the differential elastic cross near Coulomb Barrier
- Theoretical studies of ${}^{15}C+{}^{208}Pb$ at Coulomb Barrier exist for E = 65 MeV
- 1n-stripping:

N. Keenley et al., PRC 75 (2007) 056610; EPJA 50 (2014) 145

•1n-breakup:

Continuum discretized couple channel (CDCC) Inelastic (1st excited @ 740 keV)

Scattering dominated by the competition of 1n-stripping and breakup

CRC/ 1n stripping		CDCC/ direct breakup	
Total reaction (mb)	927	Total reaction (mb)	1379
1-n stripping (mb)	265	Breakup (mb)	462
		Excitation(5/2+,740keV) (mb)	45

Coulomb barrier scattering of ¹⁵C + ²⁰⁸Pb

Experiment IS699 @ HIE-ISOLDE (CERN)

- 1 x 10³ pps average ¹⁵C at reaction point
- E = 4.37 MeV/u incoming ¹⁵C (FWHM = 225 keV)
 - 65,43 MeV, after 75 μg/cm² stripping C-foil;
 64,56(23) MeV in the middle of the ²⁰⁸Pb-foil Vc ~ 66,34 MeV
- Cocktail beam of ¹⁵N + ¹⁵C: ¹⁵C/¹⁵N ≈ 1-3%
 - ✓ ¹⁵N tightly bound @ this energy → use for monitoring and normalization

Experimental setup

- Gobal Reaction Array <u>GLORIA</u>
 (*NIM A 755 69-77 [2014]*).
 - 6 Si telescopes tangent to a 6 cm radius sphere.
 - 40 μm (ΔE) + 1 mm (E) DSSDs in 256
 pixels of 3x3 mm²
 - 2-3^o angular ressolution
 - •25% geometric eff.
 - Full angular coverage $\theta_{LAB} = 15^{\circ} 165^{\circ}$
 - ²⁰⁸Pb **targets** 2.1 and 1.2 mg/cm².

Data Analysis

- Telescope configuration allows for particle identification from 2D ($\Delta E-E_{TOT}$) plots.
- High granularity of DSSDs allows for grouping together pixels within a $\Delta \theta$ range.
- In the Δθ sectors the same physics are expected (non-polarized beam) and minor effects of different energy losses happen, maximizing the statistics and reducing the errorbars.

Angle and solid Angle Optimization

Grupo de Física Nuclear Experimental

CSIC

Solid Angle Optimization

- Angle/solid angle determination is, determine geometrically for every pixel. Then the data from ¹⁵N is used as at the present energy the behaviour is Rutherford and it is optimized with a χ^2 test.
- Optimal θ , φ and $\Delta\Omega$ are chosen from the set of free parameters $(\overrightarrow{r_{RP}}, I_N) = (x_{RP}, y_{RP}, z_{RP}, I_N)$ minimizing the χ^2 /ndf when compared to the theoretical Rutherford cross section distribution.
- The loop happens to converge for several sets (z_{RP}, I_N) , so the most feasible one is chosen according to the geometry and the intensity estimation by the ISOLDE beam team.

Channeling Effects

- Channeling through Si lattice in ΔE detectors leads to a smaller energy deposition.
- It happens in specific regions where the trajectory of the incident particle coincides with a channel of the detector wafer.

IEM

Calibration with $\boldsymbol{\alpha}$ and heavy ions

¹⁵N / ¹⁵C Distributions

¹⁵N and ¹⁵C distributions - thin target - mul 2

¹⁵C + ²⁰⁸Pb Cross Section

The experimental angular distribution cross section of ¹⁵C + ²⁰⁸Pb @ 65 MeV are compared with the calculations done by Keenley et al., for the extreme case of no coupling and 1n-stripping within the coupled reaction channel and CDCC for no coupling and 1n breakup.

N. Keenley et al., PRC 75 (2007) 056610; EPJA 50 (2014) 145

Summary & Outlook

- We have performed the first study of the angular distribution of the elastic cross section of ¹⁵C + ²⁰⁸Pb @ 65 MeV at HIE-ISOLDE (CERN).
- ¹⁵C nucleus is a border line halo case with relatively low binding energy, a moderate halo case,
- It constitutes a unique case where the last neutron sits mainly in a $1S_{1/2}$ -wave state.
- Predictions on the scattering of ¹⁵C + ²⁰⁸Pb @ 65 MeV were done by Keenley, Alamanos and Rusek in the framework of CRC including 1nstripping and CDCC including breakup. 1n-stripping contribution wasexpected to be prominent as well as 1n-breakup
- The experimental angular distribution of the elastic scattering near the Coulomb Barrier (~ 60 MeV) shows strong couplings. The distribution favours the presence of 1n-stripping channel. Both the nuclear and Coulomb couplings as important as it the case of ¹¹Be and at difference of ⁶He and ¹¹Li where the Coulomb coupling dominates.

Hopefully the total cross section will support these conclusions

The IS699 collaboration

J.D. Ovejas, V.G. Tavora, O. Tengblad Instituto de Estructura de la Materia, CSIC, Serrano 113-bis, E-28006 Madrid, Spain I. Martel, A.M. Sánchez-Benítez Departamento de Física Aplicada, Universidad de IDe 21071, Huelva, Spain A. Di Pietro, P. Figuera INFN, Laboratori Nazionali del Sud Sofia 62, 1-95123, Catania, Italy N. Keeley, K. Rusek National Center fo ar Research, ul Andrzeja Soltana 7, 05-400 Otwock, Poland . Acos Física Experimental, Instituto de Física , UNAM (Mexico) J. P. Fernández Departamento de FAMN, Universidad de Sevilla, Seville, Spain D. Galaviz Faculty of Sciences, LIP, Lisbonne, Portugal

GSIC

Geometry Optimization / Hit pattern

hit pattern det. A

hit pattern det. F

M.J.G. Borge- Elastic scattering of 15C – DREB 2022